• Title/Summary/Keyword: ratio of response spectrum

Search Result 146, Processing Time 0.024 seconds

Evaluation of Seismic Response for a Suspension Bridge (현수교의 지진응답 평가)

  • 김호경;유동호;주석범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • A comparative study was performed for a suspension bridge to grasp the possible differences in seismic responses evaluated by several analytical methods. The items mainly investigated are the linear vs. nonlinear response, the response spectrum method vs. the linear dynamic analysis method, and the damping ratio and it's implementation into analysis procedures. According to the numerical example, it is found that the seismic responses are considerably affected by the damping-related parameters even though slight differences are shown depending on the response quantities and the exciting directions. On the other hand, it is also confirmed that the seismic responses are less affected by the analysis method-related parameters such as the response spectrum method vs. the linear dynamic analysis method, and the linear and nonlinear analysis method. The response spectrum method is expected to give conservative results for the examined bridge, provided that the design response spectrum in the Korean Highway Design Specification is modified according to the proper damping ratio.

Response Modification Coefficient Using Natural Period (고유진동주기를 이용한 응답수정계수)

  • 김희중
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.229-237
    • /
    • 1996
  • In some current procedures, ground motions from different sources have been scaled by their peak ground accelerations and combined to obtain smoothed response spectra for specific regions. As consideration of the inelastic deformation capacity of structure, inelastic deformations are permitted under seismic ground excitation in all codes. In the ATC(Applied Technology Council) and UBC(Uniform Building Code), the inelastic design spectrum is obtained by reducing the elastic design spectrum by a factor that is independent of structural period. In this study, the average of nonlinear response spectra calculated from a sample of 20 records for each event are constructed to obtain the smoothed response spectra. These response spectra are used to examine the effects of structural strength factors such as the yield strength ratio and damping value. Through the regression analysis of nonlinear response of system for a given damping value and yield strength ratio, the required yield strength for seismic design can be estimated for a certain earthquake event. And a response modification coefficient depending on the natural period for current seismic design specifications are proposed.

  • PDF

Pushover Analysis for Nonlinear Seismic Response of Reinforced Concrete Mixed Building Structures (철근콘크리트 복합구조물의 비선형 지진응답산정을 위한 Pushover해석)

  • Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.631-638
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}$ and/or ductility ratio $\mu$ from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method.

  • PDF

Effect of Demand Spectrums on the Accuracy of Capacity Spectrum Method (요구곡선 산정방법에 따른 능력스펙트럼법의 유효성 평가 및 비교)

  • Kim, Hong-Jin;Min, Kyung-Won;Park, Min-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.33-42
    • /
    • 2004
  • While transforming the inelastic system into the equivalent elastic one gives an advantage of simpler analysis, the actual inelastic behavior of the system is hardly modeled in the capacity spectrum method (CSM). Therefore, the accuracy of CSM depends on the precise estimation of equivalent period and damping ratio as well as the modification of the elastic response spectrum and the corresponding demand spectrum. In this paper, the effect of demand spectrums on the accuracy of CSM is evaluated. First, the response reduction factors provided in ATC-40 and Euro Code are evaluated. Numerical analysis results indicated that the acceleration responses obtained using the factor of Euro Code are closer to the actual response than those obtained using the factors of ATC-40. Next, the accuracy of CSM is evaluated constructing the demand spectrum using the absolute acceleration responses and pseudo acceleration responses. The results obtained using the absolute acceleration responses were found to be generally larger than those obtained using the pseudo ones. Since CSM often underestimates the response, the use of absolute acceleration response gives the response relatively closer to the exact ones. However, the difference becomes negligible as the hardening ratio and the yield strength ratio become larger.

Statistical Study of Ductility Factors for Elastic Perfectly Plastic SDOF Systems (탄소성 단자유도 구조물에 대한 연성계수의 통계적 분석)

  • Kang, Cheol-Kyu;Choi, Byong-Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.39-48
    • /
    • 2003
  • This paper present a summary of the results of statistical study of the ductility factor which is key component of response modification factor(R). To compute the ductility factor, a group of 1,860 ground motions recorded from various earthquake was considered. Based on the local site conditions at the recording station, ground motions were classified into four groups according to average shear wave velocity. Inleastic spectrum were computed for elastic perfectly plastic SDOF systems undergoing different level of inelastic deformation and period. Ductility factors were calculated by deviding elastic response spectrum by inelastic response spectrum. The influence f displacement ductility ratio, site condition, magnitude and epicentral distance on ductility factors were studied. The coefficient of variation was computed to evaluated the dispersion of ductility factors as the defined ratio of the standard deviation to the mean.

A new non-iterative procedure to estimate seismic demands of structures

  • Mechaala, Abdelmounaim;Chikh, Benazouz
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.585-595
    • /
    • 2022
  • Using the nonlinear static procedures has become very common in seismic codes to achieve the nonlinear response of the structure during an earthquake. The capacity spectrum method (CSM) adopted in ATC-40 is considered as one of the most known and useful procedures. For this procedure the seismic demand can be approximated from the maximum deformation of an equivalent linear elastic Single-Degree-of-Freedom system (SDOF) that has an equivalent damping ratio and period by using an iterative procedure. Data from the results of this procedure are plotted in acceleration- displacement response spectrum (ADRS) format. Different improvements have been made in order to have more accurate results compared to the Non Linear Time History Analysis (NL-THA). A new procedure is presented in this paper where the iteration process shall not be required. This will be done by estimation the ductility demand response spectrum (DDRS) and the corresponding effective damping of the bilinear system based on a new parameter of control, called normalized yield strength coefficient (η), while retaining the attraction of graphical implementation of the improved procedure of the FEMA-440. The proposed procedure accuracy should be verified with the NL-THA analysis results as a first implementation. The comparison shows that the new procedure provided a good estimation of the nonlinear response of the structure compared with those obtained when using the NL-THA analysis.

An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls

  • Saman Yaghmaei-Sabegh;Shabnam Neekmanesh;Nelson Lam;Anita Amirsardari;Nasser Taghizadieh
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.655-664
    • /
    • 2023
  • Reinforced concrete (RC) shear wall structures are one of the most widely used structural systems to resist seismic loading all around the world. Although there have been several efforts to provide conceptually simple procedures to reasonably assess the seismic demands of structures over recent decades, it seems that lesser effort has been put on a number of structural forms such as RC shear wall structures. Therefore, this study aims to represent a simple linear response spectrum-based method which can acceptably predict the nonlinear displacements of a non-ductile RC shear wall structure subjected to an individual ground motion record. An effective period and an equivalent damping ratio are introduced as the dynamic characteristics of an equivalent linear SDOF system relevant to the main structure. By applying the fundamental mode participation factor of the original MDOF structure to the linear spectral response of the equivalent SDOF system, an acceptable estimation of the nonlinear displacement response is obtained. Subsequently, the accuracy of the proposed method is evaluated by comparison with another approximate method which is based on linear response spectrum. Results show that the proposed method has better estimations for maximum nonlinear responses and is more utilizable and applicable than the other one.

Investigation of seismic performance of super long-span cable-stayed bridges

  • Zhang, Xin-Jun;Zhao, Chen-Yang;Guo, Jian
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.493-503
    • /
    • 2018
  • With the further increase of span length, the cable-stayed bridge tends to be more slender, and becomes more susceptible to the seismic action. By taking a super long-span cable-stayed bridge with main span of 1400m as example, structural response of the bridge under the E1 horizontal and vertical seismic excitations is investigated numerically by the multimode seismic response spectrum and time-history analysis respectively, the seismic behavior and also the effect of structural nonlinearity on the seismic response of super long-span cable-stayed bridge are revealed. Furthermore, the effect of structural parameters including the girder depth and width, the tower structural style, the tower height-to-span ratio, the side-tomain span ratio, the auxiliary piers in side spans and the anchorage system of stay cables etc on the seismic performance of super long-span cable-stayed bridge is investigated numerically by the multimode seismic response spectrum analysis, and the favorable earthquake-resistant structural system of super long-span cable-stayed bridge is proposed.

A Study on the Evaluation of Melon Maturity Using Acoustic Response (음파반응을 이용한 멜론의 숙도 평가에 관한 연구)

  • Choi W. K.;Choi K. H.;Lee K. J.;Choi D. S.;Kang S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.38-44
    • /
    • 2005
  • In this study, the acoustic response technique was applied to evaluate the maturity of melon nondestructively. The acoustic response signals through melon were obtained by microphone and signal conditioner with the lapse of days after fruit set. The acoustic parameters such as resonant frequencies and the spectrum energy ratio were analyzed. To investigate the relation between acoustic parameters and firmness of melon, the compression test was performed. Three resonant frequencies representing f1, f2 and f3 were 150 to 250 Hz, 300 to 400 Hz, and 450 to 550 Hz, respectively. The resonant frequencies were shifted to the lower frequencies and the magnitude of spectrum decreased as the maturity of melon increased. Some significant correlations were found between melon firmness and the spectrum energy ratio in some frequency ranges. It is possible to estimate the maturity of melon by acoustic response technique.

Design of Active Mass Damper to Improve Seismic Performance Using Capacity Spectrum Method (내진성능 향상을 위한 능력스펙트럼법에 의한 능동제어기 설계)

  • 김형섭;민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.259-266
    • /
    • 2003
  • This paper begins with the seismic performance evaluation of an existing building, which exhibits the need of additional damping to reduce its response. Required damping ratio is found by capacity spectrum method to satisfy a target response. It is expressed with the design parameter of active mass damper by adopting Linear Quadratic Regulator, Optimal gains are obtained and then weighting matrices are found. Finally the seismic performance by added active mass damper is demonstrated, which satisfies the target response.

  • PDF