• 제목/요약/키워드: ratio of alloy

검색결과 756건 처리시간 0.029초

무윤활 압연한 알루미늄 합금의 집합조직과 성형성 (Texture and Formability Development of Non-lubrication Rolled Al Alloy Sheet)

  • 아크라모프 사이드무로드;김인수
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.116-121
    • /
    • 2009
  • Formability and other mechanical properties of sheet metals are strongly dependent on the texture. It was studied to improve the formability of the Al alloy(AA3003) sheets which were rolled under the non-lubrication condition and subsequent heat treated. In the non-lubrication rolled and subsequent heat treated Al alloy sheet, the variation of the plastic strain ratios were investigated in this study. Non-lubrication rolled Al sheets showed a fine grain size and after subsequent heat treated specimens showed that the $\beta$-fiber texture component was increased. The plastic strain ratios of the non-lubrication rolled and subsequent heat treated Al alloy sheets were about two times higher than those of the original Al sheets. These could be related to the formation of $\beta$-fiber texture components through the non-lubrication rolling and subsequent heat treatment in Al sheet.

Electrocatalytic Reduction of Carbon Dioxide on Sn-Pb Alloy Electrodes

  • Choi, Song Yi;Jeong, Soon Kwan;Park, Ki Tae
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.231-236
    • /
    • 2016
  • Electrocatalytic reduction can produce useful chemicals and fuels such as carbon monoxide, methane, formate, aldehydes, and alcohols using carbon dioxide, the green house gas, as a reactant through the supply of electrical energy. In this study, tin-lead (Sn-Pb) alloy electrodes are fabricated by electrodeposition on a carbon paper with different alloy composition and used as cathode for electrocatalytic reduction of carbon dioxide into formate in an aqueous system. The prepared electrodes are measured by Faradaic efficiency and partial current density for formate production. Electrocatalytic reduction experiments are carried out at -1.8 V (vs. Ag/AgCl) using H-type cell under ambient temperature and pressure and the gas and liquid products are analyzed by gas chromatograph and liquid chromatograph, respectively. As results, the Sn-Pb electrodes show higher Faradaic efficiency and partial current density than the single metal electrode. The Sn-Pb alloy electrode which have Sn:Pb molar ratio=2:1, shows the highest Faradaic efficiency of 88.7%.

다구찌 기법에 의한 코발트기 자융성합금 용사코팅의 최적공정 설계 (Process Optimization for Co-based Self-flux Alloy Coating by Taguchi Method)

  • 이재홍;김영식
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.108-114
    • /
    • 2013
  • This paper describes process optimization for thermal-sprayed Co-based self-flux alloy coating by Taguchi method. Co-based self-flux alloy coatings were fabricated according to $L_9(3^4)$ orthogonal array using flame spray process. Hardness test and wear test were performed, the results were analyzed by analysis of variance(ANOVA) considering a multi response signal to noise ratio(MRSN). From the results of ANOVA, the optimal combination of the flame spray parameters on Co-based self-flux alloy coating could be predicted. The calculated hardness and wear rate of the coatings by ANOVA were found to be close to that of confirmation experimental result.

Magnetic and Ordering Behavior of Nb-doped FePt Alloy Films

  • Kim, Min-Kyu;Lee, Seong-Rae
    • Journal of Magnetics
    • /
    • 제10권1호
    • /
    • pp.28-32
    • /
    • 2005
  • The magnetic properties and ordering behavior of Nb-doped FePt alloy films prepared by dc-magnetron sputtering were investigated. It was found that Nb addition retarded the ordering reaction from the disordered face-centered-cubic (fcc) Al phase to the ordered face-centered-tetragonal (fct) L10 phase. The tetragonality (c/a ratio) of the ordered fct L10 phase increased with the Nb concentration. Nb addition hampered c-axis contraction during ordering, probably because the larger Nb atoms occupy Pt sites. Consequently, the coercivity and magnetocrystalline anisotropic energy of Nb-doped FePt alloy films are lower than those of un-doped FePt film under equivalent annealing conditions.

전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구 (The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy)

  • 박시온;곽근탁;박주경;이승훈;김양수;김정수;권형철;이선영
    • 대한방사선치료학회지
    • /
    • 제31권1호
    • /
    • pp.57-65
    • /
    • 2019
  • 목 적: 전자선 치료에서 저 용융점 납합금과 순수 납을 이용한 차폐 시 두께증가에 따른 블록 가장자리의 산란선 영향을 알아보고자 한다. 대상 및 방법: $10{\times}10cm^2$ 어플리케이터의 Insert Frame 절반을 차폐하도록 블록을 제작하였고, 두께는 각 재질당 3, 5, 10, 15, 20 (mm)로 하였다. 공통 조건을 에너지 6 MeV, 선량률 300 MU/Min, 갠트리 각도 0, 부여선량 100 MU으로 설정하였고, 블록의 위치와 측정점의 위치, 블록재질을 각각 달리하여 블록 두께증가에 따른 상대적인 산란비율을 평행평판형 전리함과 고체팬텀으로 측정하였다. 결 과: (측정 깊이 / 블록 위치 / 블록 재질)이 (표면 / 어플리케이터 / 순수 납)일 때 블록 두께가 3, 5, 10, 15, 20 (mm) 순으로 증가함에 따라 상대선량은 15.33 nC, 15.28 nC, 15.08 nC, 15.05 nC, 15.07 nC로 측정되었다. (표면 / 어플리케이터 / 합금 납)일 때 15.19 nC, 15.25 nC, 15.15 nC, 14.96 nC, 15.15 nC로 측정되었다. (표면 / 팬텀 위 / 순수 납)일 때 15.62 nC, 15.59 nC, 15.53 nC, 15.48 nC, 15.34 nC로 측정되었다. (표면 / 팬텀 위 / 합금 납)일 때 15.56 nC, 15.55 nC, 15.51 nC, 15.42 nC, 15.39 nC로 측정되었다. (심부 / 어플리케이터 / 순수 납)일 때 16.70 nC, 16.84 nC, 16.72 nC, 16.88 nC, 16.90 nC로 측정되었다. (심부 / 어플리케이터 / 합금 납)일 때 16.83 nC, 17.12 nC, 16.89 nC, 16.77 nC, 16.52 nC로 측정되었다. (심부 / 팬텀 위 / 순수 납)일 때 17.41 nC, 17.45 nC, 17.34 nC, 17.42 nC, 17.25 nC로 측정되었다. (심부 / 팬텀 위 / 합금 납)일 때 17.45 nC, 17.44 nC, 17.47 nC, 17.43 nC, 17.35 nC로 측정되었다. 결 론: 차폐블록을 이용하여 전자선 치료를 진행할 때 블록위치는 환자 체표면보다는 어플리케이터에 삽입하고 두께는 각 사용 에너지에 해당되는 최소 적정차폐두께로 제작해야 한다. 또한 블록 가장자리 경계선으로부터 떨어진 거리에 따라 변화하는 산란선의 영향을 충분히 고려하여 치료를 시행하는 것이 바람직하다고 사료된다.

Mg-Al합금 분진의 폭발특성에 미치는 마그네슘 성분의 영향 (Influence of the Magnesium Content on the Explosion Properties of Mg-Al Alloy Dusts)

  • 한우섭;이근원
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.1-6
    • /
    • 2012
  • Mg-Al합금 분진의 마그네슘 성분 비율이 분진폭발특성에 미치는 영향을 알기 위하여 Siwek 20 L 구형 분진폭발시험장치를 사용하여 농도를 변화시키면서 실험적으로 조사하였다. 이를 위하여 체적평균입경이 $151{\sim}160{\mu}m$의 Mg-Al합금 분진을 사용하였다. 그 결과 Mg-Al합금에서의 Mg성분의 증가는 폭발하한농도의 감소와 최대폭발압력의 증가로 나타났다. 또한 Mg-Al합금의 최대폭발압력과 최대폭발압력상승속도는 주로 분진 농도에 의존하였다. 그러나 Mg-Al (40:60 wt%), Mg-Al (50:50 wt%) 및 Mg-Al (60:40 wt%)의 폭발지수(Kst)에 있어서, 마그네슘 성분의 증가에 따라서 폭발지수가 증가함을 알 수 있었다.

Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members

  • Wu, Jinzhi;Zheng, Jianhua;Sun, Guojun;Chang, Xinquan
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.11-28
    • /
    • 2022
  • This paper considers the combination of cyclic and axial loads to investigate the hysteretic performance of H-section 6061-T6 aluminum alloy members. The hysteretic performance of aluminum alloy members is the basis for the seismic performance of aluminum alloy structures. Despite the prevalence of aluminum alloy reticulated shells structures worldwide, research into the seismic performance of aluminum alloy structures remains inadequate. To address this deficiency, we design and conduct cyclic axial load testing of three H-section members based on a reliable testing system. The influence of slenderness ratios and bending direction on the failure form, bearing capacity, and stiffness degradation of each member are analyzed. The experiment results show that overall buckling dominates the failure mechanism of all test members before local buckling occurs. As the load increases after overall buckling, the plasticity of the member develops, finally leading to local buckling and fracture failure. The results illustrate that the plasticity development of the local buckling position is the main reason for the stiffness degradation and failure of the member. Additionally, with the increase of the slenderness ratio, the energy-dissipation capacity and stiffness of the member decrease significantly. Simultaneously, a finite element model based on the Chaboche hybrid strengthening model is established according to the experiment, and the rationality of the constitutive model and validity of the finite element simulation method are verified. The parameter analysis of twenty-four members with different sections, slenderness ratios, bending directions, and boundary conditions are also carried out. Results show that the section size and boundary condition of the member have a significant influence on stiffness degradation and energy dissipation capacity. Based on the above, the appropriate material constitutive relationship and analysis method of H-section aluminum alloy members under cyclic loading are determined, providing a reference for the seismic design of aluminum alloy structures.

7075-T735 Al 합금의 피로균열 진전속도와 정류거동에 미치는 응력비의 영향 (The Effect of Stress Ratio on Fatigue Crack Propagation Rate and Arrest Behavior in 7075-T735 Al Alloy)

  • 오세욱;강상훈;허정원;김태형
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.131-139
    • /
    • 1992
  • The understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading is very important for life prediction of the air travel structures. Particularly, the retardation and arrest behavior of fatigue crack propagation by single tension overloading is essential to the understanding and appllication of fatigue crack propagation mechanism in variable amplitude loading. Numerous studies of the retardation behavior have been performed, however investigations of the arrest behavior have not been enough yet. As for the arrest behavior, Willenborg had reported that the overload shut-off ratio $[R_{so}=(K_{OL})/K_{max})_{crack arrest}]$ had been the material constant, but recently several investigators have reported that the overload shut-off ratio depends upon the stress ratio. In this study, authors have investigated the effect of stress ratio on the threshold overload shut-off ratio to generate arrest of fatigue crack growth in high tensile aluminum alloy 7075-T735 which have used in material for air travel structures, It has been $-0.4\leqqR\leqq0.4$ till now, the region of stress ratio investigated. The threshold overload shut-off ratio has decreased as stress ratio has increased in overall region of -$-0.4\leqqR\leqq0.4$ and the linearity has been seen in this material. Moreover, the experimental equation between $R_{so}$ and R has been made; The relation has been $R_{so}=-R+2.6$.

  • PDF