• Title/Summary/Keyword: ratio image

Search Result 2,769, Processing Time 0.057 seconds

An Empirical Analysis of Doppelgänger Brand Image Effects: Focused on the Internet Community (도플갱어 브랜드 이미지 효과에 대한 실증적 분석: 인터넷 커뮤니티를 중심으로)

  • Cho, Hyuk Jun;Kim, Sung Guen;Kang, Ju Young
    • The Journal of Information Systems
    • /
    • v.26 no.1
    • /
    • pp.21-51
    • /
    • 2017
  • Recently there have been an increasing number of companies suffering a negative brand image in the major media. Thompson et al. (2006) defined this as "$Doppelg{\ddot{a}}nger$ Brand Image." The images mentioned above have been created and propagated on Internet communities, which are one of the major paths of online spreading. This study will empirically analyze the effect of each $Doppelg{\ddot{a}}nger$ brand image on the customer's brand attitude, using a text-mining method focusing on "A company"'s case. This study will also cover the change in customer brand attitudes related to the company's correspondence in a situation in which the $Doppelg{\ddot{a}}nger$ brand image exists. In addition, the study will determine the presence of a priming effect after the spread of the $Doppelg{\ddot{a}}nger$ brand image. To that end, we collected 974 comments from 94,889 posts and A's official blogs related to A from B community, the largest automobile community site in Korea. Through this investigation, we obtained the following results. First, there was a significant difference in the ratio of negative sentiment of internet community before and after $Doppelg{\ddot{a}}nger$ brand image. Second, with regard to the topic modeling, the ratio of articles including negative topics increased and the other article ratio decreased over time. Finally, we found that there is a priming effect about negative brand image of "A company."

Content-based Image Retrieval using Color Ratio and Moment of Object Region (객체영역의 컬러비와 모멘트를 이용한 내용기반 영상검색)

  • Kim, Eun-Kyong;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.501-508
    • /
    • 2002
  • In this paper, we propose a content-based image retrieval using the color ratio and moment of object region. We acquire an optimal spatial information by the region splitting that utilizes horizontal-vertical projection and dominant color. It is based on hypothesis that an object locates in the center of image. We use color ratio and moment as feature informations. Those are extracted from the splitted regions and have the invariant property for various transformation, and besides, similarity measure utilizes a modified histogram intersection to acquire correlation information between bins in a color histogram. In experimental results, the proposed method shows more flexible and efficient performance than existing methods based on region splitting.

Spectral Characteristics of Hydrothermal Alteration in Zuru, NW Nigeria

  • Aisabokhae, Joseph;Tampul, Hamman
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.535-544
    • /
    • 2019
  • This study demonstrated the ability of a Landsat-8 OLI multispectral data to identify and delineate hydrothermal alteration zones around auriferous prospects within the crystalline basement, North-western Nigeria. Remote sensing techniques have been widely used in lithological, structural discrimination and alteration rock delineation, and in general geological studies. Several artisanal mining activities for gold deposit occur in the surrounding areas within the basement complex and the search for new possible mineralized zones have heightened in recent times. Systematic Landsat-8 OLI data processing methods such as colour composite, band ratio and minimum noise fraction were used in this study. Colour composite of band 4, 3 and 2 was displayed in Red-Green-Blue colour image to distinguish lithologies. Band ratio ${\frac{4}{2}}$ image displayed in red was used to highlight ferric-ion bearing minerals(hematite, goethite, jarosite) associated with hydrothermal alteration, band ratio ${\frac{5}{6}}$ image displayed in green was used to highlight ferrous-ion bearing minerals such as olivine, amphibole and pyroxenes, while ratio ${\frac{6}{7}}$ image displayed in blue was used to highlight clay minerals, micas, talc-carbonates, etc. Band rationing helped to reduce the topographic illumination effect within images. The result of this study showed the distribution of the lithological units and the hydrothermal alteration zone which can be further prospected for mineral reserves.

High Efficient Entropy Coding For Edge Image Compression

  • Han, Jong-Woo;Kim, Do-Hyun;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.31-40
    • /
    • 2016
  • In this paper, we analyse the characteristics of the edge image and propose a new entropy coding optimized to the compression of the edge image. The pixel values of the edge image have the Gaussian distribution around '0', and most of the pixel values are '0'. By using this analysis, the Zero Block technique is utilized in spatial domain. And the Intra Prediction Mode of the edge image is similar to the mode of the surrounding blocks or likely to be the Planar Mode or the Horizontal Mode. In this paper, we make use of the MPM technique that produces the Intra Prediction Mode with high probability modes. By utilizing the above properties, we design a new entropy coding method that is suitable for edge image and perform the compression. In case the existing compression techniques are applied to edge image, compression ratio is low and the algorithm is complicated as more than necessity and the running time is very long, because those techniques are based on the natural images. However, the compression ratio and the running time of the proposed technique is high and very short, respectively, because the proposed algorithm is optimized to the compression of the edge image. Experimental results indicate that the proposed algorithm provides better visual and PSNR performance up to 11 times than the JPEG.

Enhancing Medical Images by New Fuzzy Membership Function Median Based Noise Detection and Filtering Technique

  • Elaiyaraja, G.;Kumaratharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2197-2204
    • /
    • 2015
  • In recent years, medical image diagnosis has growing significant momentous in the medicinal field. Brain and lung image of patient are distorted with salt and pepper noise is caused by moving the head and chest during scanning process of patients. Reconstruction of these images is a most significant field of diagnostic evaluation and is produced clearly through techniques such as linear or non-linear filtering. However, restored images are produced with smaller amount of noise reduction in the presence of huge magnitude of salt and pepper noises. To eliminate the high density of salt and pepper noises from the reproduction of images, a new efficient fuzzy based median filtering algorithm with a moderate elapsed time is proposed in this paper. Reproduction image results show enhanced performance for the proposed algorithm over other available noise reduction filtering techniques in terms of peak signal -to -noise ratio (PSNR), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), image enhancement factor (IMF) and structural similarity (SSIM) value when tested on different medical images like magnetic resonance imaging (MRI) and computer tomography (CT) scan brain image and CT scan lung image. The introduced algorithm is switching filter that recognize the noise pixels and then corrects them by using median filter with fuzzy two-sided π- membership function for extracting the local information.

Image Scale Prediction Using Key-point Clusters on Multi-scale Image Space (다중 스케일 영상 공간에서 특징점 클러스터를 이용한 영상스케일 예측)

  • Ryu, kwon-Yeal
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this paper, we propose the method to eliminate repetitive processes for key-point detection on multi-scale image space. The proposed method detects key-points from the original image, and select a good key-points using the cluster filters, and create the key-point clusters. And it select reference objects by using direction angles of the key-point clusters, predict the scale of the original image by using the distributed distance ratio. It transform the scale of the reference image, and apply the detection of key-points to the transformed reference image. In the results of the experiment, the proposed method can be found to improve the key-points detection time by 75 % and 71 % compared to SIFT method and scaled ORB method using the multi-scale images.

Side lobe free medical ultrasonic imaging with application to assessing side lobe suppression filter

  • Jeong, Mok Kun;Kwon, Sung Jae
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.355-364
    • /
    • 2018
  • When focusing using an ultrasonic transducer array, a main lobe is formed in the focal region of an ultrasound field, but side lobes also arise around the focal region due to the leakage. Since the side lobes cannot be completely eliminated in the focusing process, they are responsible for subsequent ultrasound image quality degradation. To improve ultrasound image quality, a signal processing strategy to reduce side lobes is definitely in demand. To this end, quantitative determination of main and side lobes is necessary. We propose a theoretically and actually error-free method of exactly discriminating and separately computing the main lobe and side lobe parts in ultrasound image by computer simulation. We refer to images constructed using the main and side lobe signals as the main and side lobe images, respectively. Since the main and side lobe images exactly represent their main and side lobe components, respectively, they can be used to evaluate ultrasound image quality. Defining the average brightness of the main and side lobe images, the conventional to side lobe image ratio, and the main to side lobe image ratio as image quality metrics, we can evaluate image characteristics in speckle images. The proposed method is also applied in assessing the performance of side lobe suppression filtering. We show that the proposed method may greatly aid in the evaluation of medical ultrasonic images using computer simulations, albeit lacking the use of actual experimental data.

Comparison of JPEG and wavelet compression on intraoral digital radiographic images (구내디지털방사선영상의 JPEG와 wavelet 압축방법 비교)

  • Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.34 no.3
    • /
    • pp.117-122
    • /
    • 2004
  • Purpose : To determine the proper image compression method and ratio without image quality degradation in intraoral digital radiographic images, comparing the discrete cosine transform (DCT)-based JPEG with the wavelet-based JPEG 2000 algorithm. Materials and Methods : Thirty extracted sound teeth and thirty extracted teeth with occlusal caries were used for this study. Twenty plaster blocks were made with three teeth each. They were radiographically exposed using CDR sensors (Schick Inc., Long Island, USA). Digital images were compressed to JPEG format, using Adobe Photoshop v.7.0 and JPEG 2000 format using Jasper program with compression ratios of 5 : 1,9 : 1, 14 : 1,28 : 1 each. To evaluate the lesion detectability, receiver operating characteristic (ROC) analysis was performed by the three oral and maxillofacial radiologists. To evaluate the image quality, all the compressed images were assessed subjectively using 5 grades, in comparison to the original uncompressed images. Results: Compressed images up to compression ratio of 14 : 1 in JPEG and 28 : 1 in JPEG 2000 showed nearly the same the lesion detectability as the original images. In the subjective assessment of image quality, images up to compression ratio of 9 : 1 in JPEG and 14 : 1 in JPEG 2000 showed minute mean paired differences from the original Images. Conclusion : The results showed that the clinically acceptable compression ratios were up to 9 : 1 for JPEG and 14 : 1 for JPEG 2000. The wavelet-based JPEG 2000 is a better compression method, comparing to DCT-based JPEG for intraoral digital radiographic images.

  • PDF

The Effect of Wavelet Pair Choice in the Compression of the Satellite Images (인공위성 영상 압축에 있어 웨이브렛 선택의 효과)

  • Jin, Hong-Sung;Han, Dong-Yeob
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.575-585
    • /
    • 2011
  • The effect of wavelet pair choice in the compression of the satellite images is studied. There is a trade-off between compression rate and perception quality. The encoding ratio is used to express the compression rate, and Peak Signal-to-Noise Ratio (PSNR) is also used for the perceptional performance. The PSNR and the encoding ratio are not matched well for the images with various wavelet pairs, but the tendency is remarkable. It is hard to find the pattern of PSNR for sampled images. On the other hand, there is a pattern of the variation range of the encoding ratio for each image. The satellite images have larger values of the encoding ratio than those of nature images (close range images). Depending on the wavelet pairs, the PSNR and the encoding ratio vary as much as 13.2 to 21.6% and 16.8 to 45.5%, respectively for each image. For Synthetic Aperture Radar (SAR) images the encoding ratio varies from 16 to 20% while for the nature images it varies more than 40% depending on the choice of wavelet pairs. The choice of wavelet for the compression affects the nature images more than the satellite images. With the indices such as the PSNR and the encoding ratio, the satellite images are less sensitive to the choice of wavelet pairs. A new index, energy concentration ratio (ECR) is proposed to investigate the effect of wavelet choice on the satellite image compression. It also shows that the satellite images are less sensitive than the nature images. Nevertheless, the effect of wavelet choice on the satellite image compression varies at least 10% for all three kinds of indices. However, the important of choice of wavelet pairs cannot be ignored.

Image segmentation by fusing multiple images obtained under different illumination conditions (조명조건이 다른 다수영상의 융합을 통한 영상의 분할기법)

  • Chun, Yoon-San;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.105-111
    • /
    • 1995
  • This paper proposes a segmentation algorithm using gray-level discontinuity and surface reflectance ratio of input images obtained under different illumination conditions. Each image is divided by a certain number of subregions based on the thresholds. The thresholds are determined using the histogram of fusion image which is obtained by ANDing the multiple input images. The subregions of images are projected on the eigenspace where their bases are the major eigenvectors of image matrix. Points in the eigenspace are classified into two clusters. Images associated with the bigger cluster are fused by revised ANDing to form a combined edge image. Missing edges are detected using surface reflectance ration and chain code. The proposed algorithm obtains more accurate edge information and allows to more efficiently recognize the environment under various illumination conditions.

  • PDF