Abstract
This paper proposes a segmentation algorithm using gray-level discontinuity and surface reflectance ratio of input images obtained under different illumination conditions. Each image is divided by a certain number of subregions based on the thresholds. The thresholds are determined using the histogram of fusion image which is obtained by ANDing the multiple input images. The subregions of images are projected on the eigenspace where their bases are the major eigenvectors of image matrix. Points in the eigenspace are classified into two clusters. Images associated with the bigger cluster are fused by revised ANDing to form a combined edge image. Missing edges are detected using surface reflectance ration and chain code. The proposed algorithm obtains more accurate edge information and allows to more efficiently recognize the environment under various illumination conditions.