• Title/Summary/Keyword: rate-capability

Search Result 1,216, Processing Time 0.029 seconds

Strengthening Food Security through Food Quality Improvement - Focus on Grain Quality and Self-Sufficiency Rate

  • Meera Kweon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.10-10
    • /
    • 2022
  • The concern about food security is rising as the unstable situation of food supply and demand due to the Covid-19 pandemic, climate change, and turbulent political situation. Korea's global food security index (GFSI), analyzed by the Economist Group, is considered good, but the level continuously decreases in comparing food security levels by country. In particular, Korea is highly dependent on food imports, and food and grain self-sufficiency rates continuously decrease. Therefore, increasing those rates to strengthen food security is urgent. Among the major grains, the self-sufficiency of wheat, com, and soybeans, except rice, is relatively low. Unlike the decrease in the annual rice consumption, the annual wheat consumption has been continuously maintained or increased, which is required public-private efforts to increase the self-sufficiency rate of wheat. Applying the government's policies implemented to increase the self-sufficiency rate of rice in the past will help increase the self-sufficiency rate of wheat. In other words, expanding wheat production and infrastructure, stabilizing supply and demand, and establishing a distribution system can be applied. However, the processing capability of wheat and rice is different, which is necessary to improve wheat quality and processing technology to produce consumer-preferred wheat-based products. The wheat and flour quality can be improved through breeding, cultivation, post-harvest management, and milling. In addition, research on formulation, processes, packaging, and storage to improve the quality of wheat-based products should be done continuously. Overall, food security could be strengthened by expanding wheat production and consumption, improving wheat quality, and increasing wheat self-sufficiency.

  • PDF

An Analysis on the Reemployment of the Unemployed : Centered on the Applications of Human Capital and Human Capability Perspective (실업자의 재취업에 관한 분석: 인적자본관점(Human Capital Perspective)과 인간능력관점(Human Capability Perspective)의 적용)

  • Kang, Chul-Hee;Lee, Hong-Jik;Hong, Hyun-Mi-Ra
    • Korean Journal of Social Welfare
    • /
    • v.57 no.3
    • /
    • pp.223-249
    • /
    • 2005
  • This study examines the hazard rate of reemployment by conducting the Cox regression analysis. In addition, two gender groups are subjected to comparative analysis to identify the effect of the factors related to the human capital and human capability perspective on reemployment. For this purpose, 1,871 cases are selected from the 5th year data from Korea Labor and Income Panel Study. The results of study are as follows. First, the factors of human capital, such as education, appropriateness of skill level, and job tenure hold negative impact on the probability of reemployment, while factors of human capability, such as basic learning ability, health insurance, social insurance, residential area(living in the Seoul metropolitan area) hold positive on the probability of reemployment. It is interesting note that there are different sets of factors that affect the probability of reemployment in the two gender groups. This trend is even more apparent in the case of factors that pertain to human capability. The results of this study imply that the factors of human capability, which stress the socio-institutional characteristics, should be considered as comparably significant compared to the factors that pertain to human capital when it comes to the estimation of reemployment. Also, results of this comparative study teach us that various perspectives, such as dual labor market theory and gender-segmented labor market theory, should be factored in for reemployment discussion as well. In conclusion, this research delivers several significant messages since it introduces the concept of human capability perspective, subjected to few empirical analyses in the past, and also heralds the way for comparative analysis on the impact of the factors pertaining to human capability on reemployment.

  • PDF

A comparative study of dyeing wastewater treatment capability for Aerobic Packed/Fluidized-Bed and Moving Media Complete Mixing Activated Sludge system (염색폐수 처리성능에 대한 호기성 고정 및 유동층 생물막공법과 회전매체를 가진 완전혼합 활성슬러지 공법의 비교연구)

  • 김홍태;김규창
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.525-532
    • /
    • 1999
  • This study was conducted to evaluate capability of dyeing wastewater treatment for 3 type reactors. These reactors were Packed Bed Reactor(PBR), Fluidized Bed reactor(FBR) and Moving Media Complete Mixing Activated Sludge reactor(MMCMAS). Experiments of PBR and FBR were performed by various packing ratios and organic loading rates, experiments of MMCMAS were performed by various organic loading rates. In order to obtain ${SBOD}_5$ removal efficiencies of more than 90%, the F/Mv ratios of PBR, FBR, MMCMAS were 0.11 kgBOD/kgMLVSS$\cdot$d, 0.12 kgBOD/kgMLVSS$\cdot$d, and 0.37 kgBOD/kgMLSS$\cdot$d, respectively. So MMCMAS system which has more active microorganisms showed better capability of organic removal and also stronger dynamic and shock loadings than those of PBR and FBR. In PBR and FBR, the media packing ratio of 20% showed better performance of organic matters removal effciencies than 10% and 30%, but sludge production rate at media packing ratio of 30% was relatively lower than that of 10% and 20%. When more than 90% organic matters removal efficiency was obtained, the ratios of attached biomass to total biomass at PBR, FBR, MMCMAS were 89~99%, 87~98%, and 54~80%, respectively. The ratio of attached biomass to total biomass was low in MMCMAS. This was formation of thin biofilm due to shear force between rotaing disc and water. The average sludge production rates(kgVSS/kgBODrem.) of PBR, FBR and MMCMAS were 0.20, 0.29 and 0.54, respectively.

  • PDF

Verification of SPACE Code with MSGTR-PAFS Accident Experiment (증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증)

  • Nam, Kyung Ho;Kim, Tae Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.

Enhancement in Coexistence Capability via Virtual Channel Management for IEEE 802.15.4 LR-WPANs (가상 채널 관리를 통한 IEEE 802.15.4 LR-WPAN의 공존 능력 향상 기법)

  • Kim Tae-Hyun;Ha Jae-Yeol;Choi Sung-Hyun;Kwon Wooh-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.519-533
    • /
    • 2006
  • The number of channels specified in IEEE 802.15.4 Low-Rate Wireless Personal Area Networks(LRWPANs) is too few to operate many applications of WPANs in the same area. To overcome this limit, we introduce Virtual Channel, a novel concept to increase the number of available channels when various WPAN applications coexist. Basically, a virtual channel is a newly-created channel via superframe scheduling within the inactive period of a logical channel preoccupied by other WPANs. To maximize the coexistence capability of WPANs using virtual channels, we propose Least Collision superframe scheduler(LC-scheduler), its less complex heuristics both for a given single channel, and Virtual Channel Selector(VCS) to efficiently manage multiple available logical channels. In addition, a simple but practical synchronization method is developed to compensate different time drifts among coexisting WPANs. The simulation results demonstrate that a remarkable improvement on the coexistence capability of the 802.15.4 can be achieved through the proposed schemes.

Treatment of Paper Mill Wastewater by the Deep Shaft Activated Sludge Process (심층폭기(深層曝氣) 활성(活性)슬러지법(法)을 이용(利用)한 제지폐수(製紙廢水)의 생물학적(生物學的) 처리(處理)에 관한 연구(研究))

  • Kim, Hwan Gi;Yang, Bong Yong;Lee, Bok Yul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.275-284
    • /
    • 1992
  • A generated problem in treated highly concentrated organic wastewater by activated sludge process is the limitation of biomass concentration and oxygen transfer capability in aeration tank. To overcome the limitation, the deep shaft activated sludge process which has high oxygen transfer capability was applied to the wastewater treatment process. This paper investigated the characteristics of liquid circulation, oxygen transfer and biological treatment of paper mill wastewater by the deep shaft activated sludge process. From the obtained results, it was found that the oxygen transfer capability in the deep shaft system was much greater than those in the conventional aeration systems and almost tantamount to the pure oxygen system. The deep shaft system could treat highly concentrated organic wastewater by higher biomass concentration and organic loading rate.

  • PDF

A Study on Bow Hull Form and Icebreaking Capability of Icebreaking Vessels (빙해항행선박의 선수부 형상과 쇄빙능력에 관한 연구)

  • K. Choi;C.B. Son;E.G. Paeng
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.87-97
    • /
    • 1992
  • Of various design factors affecting icebreaking capability of an icebreaker, the stem angle(i.e., angle between bow stem and ice sheet) is the most important one under continuous icebreaking operation. This study focuses on the relationship between the bow stem angle of an icebreaker and its icebreaking capability. Considering relatively high loading-rate conditions with typical advancing speed of 3 to 4 knots, the material properties and deformation characteristics of sea ice are regarded as entirely elastic and brittle. In this paper the interaction process of icebreaker with level ice is simplified as a beam of finite length supported by Winkler-type elastic foundation simulating water buoyancy. The wedge type ice beam is loaded by the vertical impact forces due to the inclined bow stem of icebreaking vessels. The numerical model provides locations of maximum bending moment where extreme tensile stress arises and also possible fracture occurs. The model can predict a characteristic length of broken ice sheet upon the given environmental and design parameters.

  • PDF

Improving RFID Anti-Collision Algorithms with Multi-Packet Reception (다중 패킷 수신을 이용한 RFID 충돌방지 알고리즘의 성능 향상)

  • Lee, Jeong-Keun;Kwon, Taek-Young;Choi, Yang-Hee;Kim, Kyung-Ah
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1130-1137
    • /
    • 2006
  • One of the important performance issues in large-scale RFID systems is to resolve collisions among responses from RFID tags. Considering two do facto anti-collision solutions, namely the binary-tree splitting algorithm and the Slotted-Aloha algorithm, we propose to use multi-packet reception (MPR) capability to enhance the RFID tag reading rate (i.e., throughput). MPR allows an RFID reader to receive multiple reponses transmitted by tags at the same time. We analyze the effect of MPR capability in the above anti-collision algorithms, which is also validated by simulation. The analysis and simulation results show that RFID reader antenna design and signal separation techniques play an important role in improving RFID system performance with MPR capability.

Rate-capability response of graphite anode materials in advanced energy storage systems: a structural comparison

  • Farooq, Umer;Doh, Chil-Hoon;Pervez, Syed Atif;Kim, Doo-Hun;Lee, Sang-Hoon;Saleem, Mohsin;Sim, Seong-Ju;Choi, Jeong-Hee
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.39-44
    • /
    • 2016
  • The work presented in this report was a detailed comparative study of the electrochemical response exhibited by graphite anodes in Li-ion batteries having different physical features. A comprehensive morphological and physical characterization was carried out for these graphite samples via X-ray diffraction and scanning electron microscopy. Later, the electrochemical performance was analyzed using galvanostatic charge/discharge testing and the galvanostatic intermittent titration technique for these graphite samples as negative electrode materials in battery operation. The results demonstrated that a material having a higher crystalline order exhibits enhanced electrochemical properties when evaluated in terms of rate-capability performance. All these materials were investigated at high C-rates ranging from 0.1C up to 10C. Such improved response was attributed to the crystalline morphology providing short layers, which facilitate rapid Li+ ions diffusivity and electron transport during the course of battery operation. The values obtained for the electrical conductivity of these graphite anodes support this possible explanation.

A Study on the Electrode Characteristics of a New High Capacity Non-Stoichiometry Zr-Based Laves Phase Alloys for Anode Materials of Ni/MH Secondary Battery

  • Lee Sang-Min;Yu Ji-Sang;Lee Ho;Lee Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.72-75
    • /
    • 2000
  • For the purpose of developing the non-stoichiometric Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out in KAIST. After careful alloy design of $ZrMn_2-based$ hydrogen storage alloys through varing their stoichiometry while susbstituting or adding some alloying elements, the $Zr-Ti-(Lh-V-Ni)_{2.2},\;Zr-Ti-(Mn-V-Cr-Ni)_{1.8\pm0.1}$ with high capacity and better performance was developed. Consequently the $Zr-Ti-(Mn-V-Ni)_{2.2}$ alloy has a high discharge capacity of 394mAh/g and shows a high rate capability equaling to that of commercialized $AB_5$ type alloys. On the other hand, in order to develop the hydrogen storage alloy with higher discharge capacity, the hypo-stoichiometric $Zr(Mn-V-Ni)_{2-\alpha}$ alloys substituted by Ti are under developing. As the result of competitive roles of Ti and $stocihiometry({\alpha})$, the discharge capacity of $Zr-Ti-(Mn-V-Cr-Ni)_{l.8\pm0.1}$ alloys is about 400mAh/g(410 mAh/g, which shows the highest level of performance in the Zr-based alloy developed. Our sequential endeavor is improving the shortcoming of Zr-based Laves phase alloy for commercialization, i.e., poor activation property and low rate capability, etc. It is therefore believed that the commercialization of Zr-based Laves phase hydrogen storage alloy for Ni-MH rechargeable battery is in near future.