• Title/Summary/Keyword: rate of resistance increase

Search Result 687, Processing Time 0.032 seconds

Accelerated Formation of Surface Films on the Degradation of LiCoO2 Cathode at High Temperature (표면 피막 형성이 LiCoO2 양극의 고온 열화에 미치는 영향)

  • Sung, Jong Hun;Hasan, Fuead;Yoo, Hyun Deog
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.57-65
    • /
    • 2020
  • It is crucial to investigate the thermal degradation of lithium-ion batteries (LIBs) to understand the possible malfunction at high temperature. Herein, we investigated the effects of surface film formation on the thermal degradation of lithium cobalt oxide (LiCoO2, LCO) cathode that is one of representative cathode materials. Cycling test at 60℃ exhibited poorer cycleability compared with the cycling at 25℃. Cathodes after the initial 5 cycles at 60℃ (60-LCO) exhibited higher impedance compared to the cathode after initial 5 cycles at 25℃ (25-LCO), resulting in the lower rate capability upon subsequent cycling at 25℃, although the capacity values were similar at the lowest C-rate of 0.1C. In order to understand degradation of the LCO cathode at the high temperature, we analyzed the cathodes surface using X-ray photoelectron spectroscopy (XPS). Among various peaks, intensity of lithium hydroxide (LiOH) increased substantially after the operation at 60℃, and the C-C signal that represents the conductive agent was distinctly lower on 60-LCO compared to 25-LCO. These results pointed to an excessive formation of cathode-electrolyte interphase including LiOH at 60℃, leading to the increase in the resistance and the resultant degradation in the electrochemical performances.

An Analysis on the Bleeding Effect of SCW Ground Heat Exchanger using Thermal Response Test Data (열응답시험 데이터를 이용한 SCW형 지중열교환기 블리딩 효과 분석)

  • Chang, Keun-Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.512-520
    • /
    • 2020
  • Recently, the applications of the standing column well (SCW) ground heat exchanger (GHX) have increased significantly in Korea as a heat transfer mechanism of ground source heat pump systems (GSHP) because of its high heat capacity and efficiency. Among the various design and operating parameters, bleeding was found to be the most important parameter for improving the thermal performance, such as ground thermal conductivity and borehole thermal resistance. In this study, a bleeding analysis model was developed using the thermal response test data, and the effects of bleeding rates and bleeding locations on the thermal performance of anSCW were investigated. The results show that, when the ground water flows into the top of anSCW, the time variation of circulating water temperature decreased with increasing bleeding rate, and the ground thermal conductivity increases by as much as 179% with a 30% bleeding rate. When the ground water flows into the bottom of the SCW, the circulating water temperatures become almost constant after the increase in the beginning time because the circulating water exchanges heat with the ground structure before mixing with the ground water at the bottom.

Studies on the Benomyl Resistance of Oyster Mushroom (Pleurotus spp.) (느타리버섯의 Benomyl 저항성(抵抗性)에 관한 연구(硏究))

  • Yoo, Sung-Joon;Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • The mycelial growth of some mushrooms was inhibited by benomyl treatment. The $ED_{50}$ of benomyl to that of Pleurotus spp., Agaricus bisporus and Flammulina velutipes was 25ppm, 50ppm and 200ppm, respectively, which indicates the former was the most sensitive to the fungicide. The mycelial growth of mushrooms growing on artificial media amended by benomyl was increased when they were cultured successively 5 times and 10 times on the media. The increasing rate of that of each mushroom was the highest at the concentration of $ED_{50}$ of benomyl. The mycelial growth of P. ostreatus was increased progressively as the number of successive culturing increased, while that of P. florida and A. bisporus was increased until they were cultured successively up to 5 times and 7 times, respectively, but they were decreased after that. Mutant sectors of mycelia were induced by successive treatment of benomyl. Mutant sectors of P. ostreatus appeared earlier than those of P. florida and all of them were induced earlier on the media of low contration of benomyl than on that of high concentration. The mycelia of mutant sectors induced by benomyl treatment grow faster than those of mother colony treated with benomyl successively, but there was no difference in resistance against the fungicide between them. The increase of mycelial growth of the mushrooms culturing successively on media containing benomyl indicated that they might obtain the resistance against benomyl.

  • PDF

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Characteristics of Flame Retardent and Mothproof Conservation of Microwave Heated wood (마이크로파 가열 목재의 방염·방충 복합 보존처리 특성)

  • Kim, Chong-Gun;Park, Cheul-Woo;Yoon, Tae-Ho;Lim, Nam-Gi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.234-246
    • /
    • 2013
  • It was found that test piece heated rapidly by 3 kW microwave for 5 minutes satisfies the targeted temperature and the percentage of moisture content, and the highest rate of weight increase is obtained in case of 120 minute immersion in the mixture of phosphates and heterocyclic compounds, from the result of such analysis as: kiln drying schedule, flame retardent by flammability test, insect resistance by termites, and permeability of combined penetrant for the wood after assigning multifunctional finish by immersing conifer structural frame, which is used for the frame work of wooden house and indoor/outdoor finishing in flame retardant and insect repellent materials mixture with the remaining heat of microwave. In addition, after a test of flame retardent treated item, it was identified that every mixture of phosphates corresponds with the standards of flame retardent, and upon investigation of moritality of 7 days after putting termites, it was showed that test piece immersed in the mixture of phosphates and heterocyclic compounds has the best characteristics, showing over 96% of high moritality. From the analysis of inward permeability of combined penetrant for the wood, it was decided that excellent performance in the flame retardent and insect resistance of the wood revealed due to full penetration of combined penetrant as it was found that combined penetrant penetrated through the whole inner cells of the wood.

Effects of Multi-walled Carbon Nanotubes on Electrical and Wear Characteristics of High Impact Polystyrene Composites (HIPS 복합재의 전기적 및 마모 특성에 미치는 다중벽 탄소나노튜브의 영향)

  • Jeong, Yeon-Woo;Kim, Kyung-Shik;Lee, Hyun-Woo;Jeong, Man-Woo;Lee, Jae-Hyeok;Kim, Jae-Hyun;Lee, Hak-Joo;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.95-101
    • /
    • 2015
  • Carbon nanotubes (CNTs) are widely used in polymer composites as filler materials to enhance various characteristics of the composites because of their remarkable mechanical, electrical, and thermal properties. In this study, we investigate the effects of MWCNTs on the electrical and wear characteristics of high-impact polystyrene (HIPS) composites, and compare the results with the effects of carbon black (CB). The HIPS composites are classified as Bare-HIPS, MWCNT-HIPS composites containing 2, 3, 4, and 5 wt% MWCNTs, and CB-HIPS containing 17 wt% CB. Electrical characteristics are evaluated by measuring the surface resistance using a 4-point probe. Wear characteristics are evaluated using the reciprocating wear test, and a chrome steel ball with a curvature of 6.3 mm is used as the counterpart. The results show that the addition of MWCNTs or CB can improve the electrical and wear characteristics of HIPS composites. In the case of MWCNT-HIPS composites, surface resistance, friction coefficient, and specific wear rate decrease as the concentrations of MWCNTs increase. Moreover, the addition of MWCNTs is more effective in improving the electrical and wear characteristics of HIPS composites compared to the addition of CB. To fabricate the HIPS composite with appropriate electrical and wear characteristics, more than 4 wt% MWCNTs is added to HIPS.

Physical Properties of the Silica-Reinforced Tire Tread Compounds by the Increased Amount of Vulcanization Agents (가교제 증량이 트레드용 실리카 컴파운드의 물성에 미치는 영향)

  • Seo, Byeongho;Kim, Ki-Hyun;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.201-208
    • /
    • 2013
  • In this study, effect of different amounts of sulfur and vulcanization accelerators in the acrylonitrile styrene-butadiene rubber (AN-SBR)/silica compounds on the properties of tire tread compound were studied. As a result, cure rate and degree of cross-linking of the compounds were increased due to enhanced cross-linking reactivity by the increased amounts of sulfur and vulcanization accelerators. Also, abrasion resistance and the mechanical properties such as hardness and modulus of the compounds were improved by enhanced degree of cross-linking of the compounds. For the dynamic properties, tan ${\delta}$ value at $0^{\circ}C$ was increased due to the increase of glass transition temperature ($T_g$) by enhanced degree of cross-linking of the compound, and tan ${\delta}$ value at $60^{\circ}C$ was decreased. Initial cure time ($t_1$) showed the linear relationship with tan ${\delta}$ value at $60^{\circ}C$. This result is attributed that reduced initial cure time ($t_1$) of compounds by applying increased amount of curatives can form cross-linking in early stage of vulcanization that may suppress development of filler network. This result is verified by observation on the surface of annealed compounds using AFM (atomic force microscopy). Consequently, decreased initial cure time is considered a very important parameter to reduce tan ${\delta}$ at $60^{\circ}C$ through reduced re-agglomeration of silica particles.

Preparation and Characterization of Iron Phthalocyanine Thin Films by Vacuum Sublimation (진공증착법을 이용한 철프탈로시아닌 박막의 합성과 그 특성)

  • Jee, Jong-Gi;Lee, Jae-Gu;Hwang, Dong-Uk;Lim, Yoon-Mook;Yang, Hyun-Soo;Ryu, Haiil;Park, Ha-Sun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.644-651
    • /
    • 1999
  • In this experiment the Iron phthalocyanine (FePc) films on Si-wafer and alumina pallet were prepared using vacuum sublimation with conditions of changing reaction time, temperature, and deposition rate. Then, some samples were annealed following annealing. Techniques such as XRD, SEM, and resistance measurement method, were dedicated to characterize the changes of surface structure, phase transformation and electric resistance sensitivity in accordance with change of film thickness. In proportion to the decrease of deposition temperature from $370^{\circ}C$ to $350^{\circ}C$, intensities of (200), (011), (211) and (114) planes of $\alpha$-phase were decreased and (100) plane of $\beta$-phase were appeared. The film thickness were controlled by regulating the volume of precursor material during rapid deposition. As a result, it was observed that crystalline particle size had been increased according to the increase of film thickness and $\alpha$-phase transformed to $\beta$-phase. In consequence of measuring the crystallinity of films annealed between $150^{\circ}C$ and $350^{\circ}C$, $\alpha$- to $\beta$-phase transformation was appeared to begin at $150^{\circ}C$ and completely transformed to $\beta$-phase at $350^{\circ}C$. Electric resistance sensitivity of FePc film to $NO_x$ gas along temperature change of FePc films was observed to be more stable with the decrease of the film thickness.

  • PDF

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.

ITZ Analysis of Cement Matrix According to the Type of Lightweight Aggregate Using EIS (EIS를 활용한 경량골재 종류별 시멘트 경화체의 계면특성 분석)

  • Kim, Ho-Jin;Jung, Yoong-Hoon;Bae, Je-Hyun;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • Aggregate occupies about 70-85% of the concrete volume and is an important factor in reducing the drying shrinkage of concrete. However, when constructing high-rise buildings, it acts as a problem due to the high load of natural aggregates. If the load becomes large during the construction of a high-rise building, creep may occur and the ground may be eroded. Material costs increase and there are financial problems. In order to reduce the load on concrete, we are working to reduce the weight of aggregates. However, artificial lightweight aggregates affect the interface between the aggregate and the paste due to its higher absorption rate and lower adhesion strength than natural aggregates, affecting the overall strength of concrete. Therefore, in this study, in order to grasp the interface between natural aggregate and lightweight aggregate by type, we adopted a method of measuring electrical resistance using an EIS measuring device, which is a non-destructive test, and lightweight bone. The change in the state of the interface was tested on the outside of the material through a blast furnace slag coating. As a result of the experiment, it was confirmed that the electric resistance was about 90% lower than that in the air-dried state through the electrolyte immersion, and the electric resistance differs depending on the type of aggregate and the presence or absence of coating. As a result of the experiment, the difference in compressive strength depending on the type of aggregate and the presence or absence of coating was shown, and the difference in impedance value and phase angle for each type of lightweight aggregate was shown.