References
- Y. Nishi, 'Lithium ion secondary batteries; past 10 years and the future', J. Power Sources, 100, 101 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
- J.-Y. Hwang, S.-T. Myung and Y.-K. Sun, 'Sodium-ion batteries: present and future', Chem. Soc. Rev., 46, 3529 (2017). https://doi.org/10.1039/C6CS00776G
-
J. Zheng, P. Yan, L. Estevez, C. Wang and J.-G. Zhang, 'Effect of calcination temperature on the electrochemical properties of nickel-rich
$LiNi_{0.76}Mn_{0.14}Co_{0.10}O_2$ cathodes for lithium-ion batteries', Nano Energy, 49, 538 (2018). https://doi.org/10.1016/j.nanoen.2018.04.077 - W. Cho, Y. J. Lim, S.-M. Lee, J. H. Kim, J.-H. Song, J.-S. Yu, Y.-J. Kim and M.-S. Park, 'Facile Mn surface doping of Ni-rich layered cathode materials for lithium ion batteries', ACS Appl. Mater. Interfaces, 10, 38915 (2018). https://doi.org/10.1021/acsami.8b13766
-
L. Zhu, T.-F. Yan, D. Jia, Y. Wang, Q. Wu, H.-T. Gu, Y.-M. Wu and W.-P. Tang, '
$LiFePO_4$ -Coated$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Materials with Improved High Voltage Electrochemical Performance and Enhanced Safety for Lithium Ion Pouch Cells', J. Electrochem. Soc., 166, A5437 (2019). https://doi.org/10.1149/2.0651903jes - Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei and Z. Liu, 'Carbon Nanomaterial Based Flexible Batteries for Wearable Electronics', Adv. Mater., 31, 1800716 (2019). https://doi.org/10.1002/adma.201800716
-
Y. Park, S. H. Shin, H. Hwang, S. M. Lee, S. P. Kim, H. C. Choi and Y. M. Jung, 'Investigation of solid electrolyte interface (SEI) film on
$LiCoO_2$ cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS)', J. Mol. Struct., 1069, 157 (2014). https://doi.org/10.1016/j.molstruc.2014.01.041 - F. Zheng, M. Kotobuki, S. Song, M. O. Lai and L. Lu, 'Review on solid electrolytes for all-solid-state lithium-ion batteries', J. Power Sources, 389, 198 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022
- J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries', Chem. Mater., 22, 587 (2009). https://doi.org/10.1021/cm901452z
- V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, 'Challenges in the development of advanced Li-ion batteries: a review', Energy Environ. Sci., 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b
- D. H. Doughty and E. P. Roth, 'A general discussion of Li ion battery safety', Electrochem. Soc. Interface, 21, 37 (2012).
- L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, 'A review on the key issues for lithium-ion battery management in electric vehicles', J. Power Sources, 226, 272 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
- P. Balakrishnan, R. Ramesh and T. P. Kumar, 'Safety mechanisms in lithium-ion batteries', J. Power Sources, 155, 401 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.002
- A. Jansen, A. Kahaian, K. Kepler, P. Nelson, K. Amine, D. Dees, D. Vissers and M. Thackeray, 'Development of a high-power lithium-ion battery', J. Power Sources, 81, 902 (1999). https://doi.org/10.1016/S0378-7753(99)00268-2
- K. Liu, Y. Liu, D. Lin, A. Pei and Y. Cui, 'Materials for lithium-ion battery safety', Sci. Adv., 4, eaas9820 (2018).
-
K. Mizushima, P. Jones, P. Wiseman and J. B. Goodenough, '
$Li_xCoO_2$ (0https://doi.org/10.1016/0025-5408(80)90012-4 -
L. Daheron, R. Dedryvere, H. Martinez, D. Flahaut, M. Menetrier, C. Delmas and D. Gonbeau, 'Possible Explanation for the Efficiency of Al-Based Coatings on
$LiCoO_2$ : Surface Properties of$LiCo_{1-x}Al_xO_2$ Solid Solution', Chem. Mater., 21, 5607 (2009). https://doi.org/10.1021/cm901972e -
Y.-C. Lu, A. N. Mansour, N. Yabuuchi and Y. Shao-Horn, 'Probing the origin of enhanced stability of "
$AlPO_4$ " nanoparticle coated$LiCoO_2$ during cycling to high voltages: combined XRD and XPS studies', Chem. Mater., 21, 4408 (2009). https://doi.org/10.1021/cm900862v -
J. Cho, Y. J. Kim and B. Park, '
$LiCoO_2$ cathode material that does not show a phase transition from hexagonal to monoclinic phase', J. Electrochem. Soc., 148, A1110 (2001). https://doi.org/10.1149/1.1397772 -
J. N. Reimers and J. Dahn, 'Electrochemical and in situ X-ray diffraction studies of lithium intercalation in
$Li_{x-}CoO_2$ ', J. Electrochem. Soc., 139, 2091 (1992). https://doi.org/10.1149/1.2221184 -
G. Amatucci, J. Tarascon and L. Klein, '
$CoO_2$ , the end member of the$Li_xCoO_2$ solid solution', J. Electrochem. Soc., 143, 1114 (1996). https://doi.org/10.1149/1.1836594 -
J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu and H. Li, 'Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage
$LiCoO_2$ cathode and its interaction with Li anode', Energy Storage Materials, 14, 1 (2018). https://doi.org/10.1016/j.ensm.2018.02.016 -
A. Yano, M. Shikano, A. Ueda, H. Sakaebe and Z. Ogumi, '
$LiCoO_2$ degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating', J. Electrochem. Soc., 164, A6116 (2017). https://doi.org/10.1149/2.0181701jes -
S.-T. Myung, N. Kumagai, S. Komaba and H.-T. Chung, 'Effects of Al doping on the microstructure of
$LiCoO_2$ cathode materials', Solid State Ionics, 139, 47 (2001). https://doi.org/10.1016/S0167-2738(00)00828-6 -
M. Zou, M. Yoshio, S. Gopukumar and J.-i. Yamaki, 'Synthesis of high-voltage (4.5 V) cycling doped
$LiCoO_2$ for use in lithium rechargeable cells', Chem. Mater., 15, 4699 (2003). https://doi.org/10.1021/cm0347032 -
A. Liu, J. Li, R. Shunmugasundaram and J. Dahn, 'Synthesis of Mg and Mn Doped
$LiCoO_2$ and Effects on High Voltage Cycling', J. Electrochem. Soc., 164, A1655 (2017). https://doi.org/10.1149/2.1381707jes -
C. Hudaya, J. H. Park, J. K. Lee and W. Choi, '
$SnO_2$ -coated$LiCoO_2$ cathode material for high-voltage applications in lithium-ion batteries', Solid State Ionics, 256, 89 (2014). https://doi.org/10.1016/j.ssi.2014.01.016 -
A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai and J. Li, 'Sputtering
$TiO_2$ on$LiCoO_2$ composite electrodes as a simple and effective coating to enhance high-voltage cathode performance', J. Power Sources, 346, 24 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.035 -
B. Hwang, C. Chen, M. Cheng, R. Santhanam and K. Ragavendran, 'Mechanism study of enhanced electrochemical performance of
$ZrO_2$ -coated$LiCoO_2$ in high voltage region', J. Power Sources, 195, 4255 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.040 -
S. Oh, J. K. Lee, D. Byun, W. I. Cho and B. W. Cho, 'Effect of
$Al_2O_3$ coating on electrochemical performance of$LiCoO_2$ as cathode materials for secondary lithium batteries', J. Power Sources, 132, 249 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.049 -
Y.-H. Chang and S. Y. Choi, 'Analyses on the Physical and Electrochemical Properties of
$Al_2O_3$ Coated$LiCoO_2$ ', J. Korean Electrochem. Soc., 10, 184 (2007). https://doi.org/10.5229/JKES.2007.10.3.184 -
H. Wang, W.-D. Zhang, L.-Y. Zhu and M.-C. Chen, 'Effect of
$LiFePO_4$ coating on electrochemical performance of$LiCoO_2$ at high temperature', Solid State Ionics, 178, 131 (2007). https://doi.org/10.1016/j.ssi.2006.10.028 -
A. Zhou, J. Xu, X. Dai, B. Yang, Y. Lu, L. Wang, C. Fan and J. Li, 'Improved high-voltage and high-temperature electrochemical performances of
$LiCoO_2$ cathode by electrode sputter-coating with$Li_3PO_4$ ', J. Power Sources, 322, 10 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.092 -
X. Zhu, K. Shang, X. Jiang, X. Ai, H. Yang and Y. Cao, 'Enhanced electrochemical performance of Mg-doped
$LiCoO_2$ synthesized by a polymer-pyrolysis method', Ceram. Int., 40, 11245 (2014). https://doi.org/10.1016/j.ceramint.2014.03.170 -
Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, G. Yan and J. Wang, 'Mg doping and zirconium oxyfluoride coating co-modification to enhance the high-voltage performance of
$LiCoO_2$ for lithium ion battery', J. Alloys Compd., 621, 212 (2015). https://doi.org/10.1016/j.jallcom.2014.09.147 -
J. Fu, D. Mu, B. Wu, J. Bi, H. Cui, H. Yang, H. Wu and F. Wu, 'Electrochemical properties of the
$LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ cathode material modified by lithium tungstate under high voltage', ACS Appl. Mater. Interfaces, 10, 19704 (2018). https://doi.org/10.1021/acsami.8b04167 - P. Elumalai, H. Vasan and N. Munichandraiah, 'A note on overpotential dependence of AC impedance data', J. Solid State Electrochem., 3, 470 (1999). https://doi.org/10.1007/s100080050183
- J. Kim, J. Lee, H. Ma, H. Y. Jeong, H. Cha, H. Lee, Y. Yoo, M. Park and J. Cho, 'Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries', Adv. Mater., 30, 1704309 (2018). https://doi.org/10.1002/adma.201704309
-
Z. W. Lebens-Higgins, S. Sallis, N. V. Faenza, F. Badway, N. Pereira, D. M. Halat, M. Wahila, C. Schlueter, T.-L. Lee and W. Yang, 'Evolution of the Electrode-Electrolyte Interface of
$LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Electrodes Due to Electrochemical and Thermal Stress', Chem. Mater., 30, 958 (2018). https://doi.org/10.1021/acs.chemmater.7b04782 -
S. Verdier, L. El Ouatani, R. Dedryvere, F. Bonhomme, P. Biensan and D. Gonbeau, 'XPS study on
$Al_2O_3$ -and$AlPO_4$ -coated$LiCoO_2$ cathode material for high-capacity Li ion batteries', J. Electrochem. Soc., 154, A1088 (2007). https://doi.org/10.1149/1.2789299 -
J. Chen, L. Zhu, D. Jia, X. Jiang, Y. Wu, Q. Hao, X. Xia, Y. Ouyang, L. Peng and W. Tang, '
$LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating', Electrochim. Acta, 312, 179 (2019). https://doi.org/10.1016/j.electacta.2019.04.153