DOI QR코드

DOI QR Code

Accelerated Formation of Surface Films on the Degradation of LiCoO2 Cathode at High Temperature

표면 피막 형성이 LiCoO2 양극의 고온 열화에 미치는 영향

  • Sung, Jong Hun (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University) ;
  • Hasan, Fuead (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University) ;
  • Yoo, Hyun Deog (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University)
  • Received : 2020.04.30
  • Accepted : 2020.05.25
  • Published : 2020.08.31

Abstract

It is crucial to investigate the thermal degradation of lithium-ion batteries (LIBs) to understand the possible malfunction at high temperature. Herein, we investigated the effects of surface film formation on the thermal degradation of lithium cobalt oxide (LiCoO2, LCO) cathode that is one of representative cathode materials. Cycling test at 60℃ exhibited poorer cycleability compared with the cycling at 25℃. Cathodes after the initial 5 cycles at 60℃ (60-LCO) exhibited higher impedance compared to the cathode after initial 5 cycles at 25℃ (25-LCO), resulting in the lower rate capability upon subsequent cycling at 25℃, although the capacity values were similar at the lowest C-rate of 0.1C. In order to understand degradation of the LCO cathode at the high temperature, we analyzed the cathodes surface using X-ray photoelectron spectroscopy (XPS). Among various peaks, intensity of lithium hydroxide (LiOH) increased substantially after the operation at 60℃, and the C-C signal that represents the conductive agent was distinctly lower on 60-LCO compared to 25-LCO. These results pointed to an excessive formation of cathode-electrolyte interphase including LiOH at 60℃, leading to the increase in the resistance and the resultant degradation in the electrochemical performances.

리튬이온전지의 열적 열화 메커니즘을 이해하는 것은 전지의 안전성을 향상시키기 위한 필수적인 과정이다. 본 논문에서는 대표적인 양극물질의 하나인 리튬코발트산화물(LiCoO2, LCO)이 고온에서 작동할 때 형성되는 표면 필름에 의한 전기화학적 성능 열화를 조사하였다. 먼저 25℃와 60℃ 각각의 온도에서 사이클 테스트를 진행한 결과, 60℃에서 25℃에 비해 저하된 사이클 수명을 보였다. 이후 처음 5사이클을 25℃, 60℃에서 구동시킨 LCO 양극을 각각 25-LCO, 60-LCO라 명명하였으며, 이후 임피던스 및 출력 특성 분석은 25℃에서 진행하였다. 이때 두 샘플 모두 저속에서의 초기 용량은 비슷함에도 불구하고 60-LCO가 25-LCO에 비해 높은 임피던스와 낮은 출력 특성을 보였다. X-선 광전자분광 (XPS)분석 결과 60-LCO 샘플에서 cathode-electrolyte interphase의 성분 중 하나인 절연성의 수산화 리튬 (LiOH) 성분이 다량 검출되었으며, 이는 고온에서 과도한 표면 필름 형성이 양극의 표면 저항 증가 및 속도/수명 특성 저하를 가져왔음을 보여준다.

Keywords

References

  1. Y. Nishi, 'Lithium ion secondary batteries; past 10 years and the future', J. Power Sources, 100, 101 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
  2. J.-Y. Hwang, S.-T. Myung and Y.-K. Sun, 'Sodium-ion batteries: present and future', Chem. Soc. Rev., 46, 3529 (2017). https://doi.org/10.1039/C6CS00776G
  3. J. Zheng, P. Yan, L. Estevez, C. Wang and J.-G. Zhang, 'Effect of calcination temperature on the electrochemical properties of nickel-rich $LiNi_{0.76}Mn_{0.14}Co_{0.10}O_2$ cathodes for lithium-ion batteries', Nano Energy, 49, 538 (2018). https://doi.org/10.1016/j.nanoen.2018.04.077
  4. W. Cho, Y. J. Lim, S.-M. Lee, J. H. Kim, J.-H. Song, J.-S. Yu, Y.-J. Kim and M.-S. Park, 'Facile Mn surface doping of Ni-rich layered cathode materials for lithium ion batteries', ACS Appl. Mater. Interfaces, 10, 38915 (2018). https://doi.org/10.1021/acsami.8b13766
  5. L. Zhu, T.-F. Yan, D. Jia, Y. Wang, Q. Wu, H.-T. Gu, Y.-M. Wu and W.-P. Tang, '$LiFePO_4$-Coated $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Materials with Improved High Voltage Electrochemical Performance and Enhanced Safety for Lithium Ion Pouch Cells', J. Electrochem. Soc., 166, A5437 (2019). https://doi.org/10.1149/2.0651903jes
  6. Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei and Z. Liu, 'Carbon Nanomaterial Based Flexible Batteries for Wearable Electronics', Adv. Mater., 31, 1800716 (2019). https://doi.org/10.1002/adma.201800716
  7. Y. Park, S. H. Shin, H. Hwang, S. M. Lee, S. P. Kim, H. C. Choi and Y. M. Jung, 'Investigation of solid electrolyte interface (SEI) film on $LiCoO_2$ cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS)', J. Mol. Struct., 1069, 157 (2014). https://doi.org/10.1016/j.molstruc.2014.01.041
  8. F. Zheng, M. Kotobuki, S. Song, M. O. Lai and L. Lu, 'Review on solid electrolytes for all-solid-state lithium-ion batteries', J. Power Sources, 389, 198 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022
  9. J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries', Chem. Mater., 22, 587 (2009). https://doi.org/10.1021/cm901452z
  10. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, 'Challenges in the development of advanced Li-ion batteries: a review', Energy Environ. Sci., 4, 3243 (2011). https://doi.org/10.1039/c1ee01598b
  11. D. H. Doughty and E. P. Roth, 'A general discussion of Li ion battery safety', Electrochem. Soc. Interface, 21, 37 (2012).
  12. L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, 'A review on the key issues for lithium-ion battery management in electric vehicles', J. Power Sources, 226, 272 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
  13. P. Balakrishnan, R. Ramesh and T. P. Kumar, 'Safety mechanisms in lithium-ion batteries', J. Power Sources, 155, 401 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.002
  14. A. Jansen, A. Kahaian, K. Kepler, P. Nelson, K. Amine, D. Dees, D. Vissers and M. Thackeray, 'Development of a high-power lithium-ion battery', J. Power Sources, 81, 902 (1999). https://doi.org/10.1016/S0378-7753(99)00268-2
  15. K. Liu, Y. Liu, D. Lin, A. Pei and Y. Cui, 'Materials for lithium-ion battery safety', Sci. Adv., 4, eaas9820 (2018).
  16. K. Mizushima, P. Jones, P. Wiseman and J. B. Goodenough, '$Li_xCoO_2$ (0 https://doi.org/10.1016/0025-5408(80)90012-4
  17. L. Daheron, R. Dedryvere, H. Martinez, D. Flahaut, M. Menetrier, C. Delmas and D. Gonbeau, 'Possible Explanation for the Efficiency of Al-Based Coatings on $LiCoO_2$: Surface Properties of $LiCo_{1-x}Al_xO_2$ Solid Solution', Chem. Mater., 21, 5607 (2009). https://doi.org/10.1021/cm901972e
  18. Y.-C. Lu, A. N. Mansour, N. Yabuuchi and Y. Shao-Horn, 'Probing the origin of enhanced stability of "$AlPO_4$" nanoparticle coated $LiCoO_2$ during cycling to high voltages: combined XRD and XPS studies', Chem. Mater., 21, 4408 (2009). https://doi.org/10.1021/cm900862v
  19. J. Cho, Y. J. Kim and B. Park, '$LiCoO_2$ cathode material that does not show a phase transition from hexagonal to monoclinic phase', J. Electrochem. Soc., 148, A1110 (2001). https://doi.org/10.1149/1.1397772
  20. J. N. Reimers and J. Dahn, 'Electrochemical and in situ X-ray diffraction studies of lithium intercalation in $Li_{x-}CoO_2$', J. Electrochem. Soc., 139, 2091 (1992). https://doi.org/10.1149/1.2221184
  21. G. Amatucci, J. Tarascon and L. Klein, '$CoO_2$, the end member of the $Li_xCoO_2$ solid solution', J. Electrochem. Soc., 143, 1114 (1996). https://doi.org/10.1149/1.1836594
  22. J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu and H. Li, 'Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage $LiCoO_2$ cathode and its interaction with Li anode', Energy Storage Materials, 14, 1 (2018). https://doi.org/10.1016/j.ensm.2018.02.016
  23. A. Yano, M. Shikano, A. Ueda, H. Sakaebe and Z. Ogumi, '$LiCoO_2$ degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating', J. Electrochem. Soc., 164, A6116 (2017). https://doi.org/10.1149/2.0181701jes
  24. S.-T. Myung, N. Kumagai, S. Komaba and H.-T. Chung, 'Effects of Al doping on the microstructure of $LiCoO_2$ cathode materials', Solid State Ionics, 139, 47 (2001). https://doi.org/10.1016/S0167-2738(00)00828-6
  25. M. Zou, M. Yoshio, S. Gopukumar and J.-i. Yamaki, 'Synthesis of high-voltage (4.5 V) cycling doped $LiCoO_2$ for use in lithium rechargeable cells', Chem. Mater., 15, 4699 (2003). https://doi.org/10.1021/cm0347032
  26. A. Liu, J. Li, R. Shunmugasundaram and J. Dahn, 'Synthesis of Mg and Mn Doped $LiCoO_2$ and Effects on High Voltage Cycling', J. Electrochem. Soc., 164, A1655 (2017). https://doi.org/10.1149/2.1381707jes
  27. C. Hudaya, J. H. Park, J. K. Lee and W. Choi, '$SnO_2$-coated $LiCoO_2$ cathode material for high-voltage applications in lithium-ion batteries', Solid State Ionics, 256, 89 (2014). https://doi.org/10.1016/j.ssi.2014.01.016
  28. A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai and J. Li, 'Sputtering $TiO_2$ on $LiCoO_2$ composite electrodes as a simple and effective coating to enhance high-voltage cathode performance', J. Power Sources, 346, 24 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.035
  29. B. Hwang, C. Chen, M. Cheng, R. Santhanam and K. Ragavendran, 'Mechanism study of enhanced electrochemical performance of $ZrO_2$-coated $LiCoO_2$ in high voltage region', J. Power Sources, 195, 4255 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.040
  30. S. Oh, J. K. Lee, D. Byun, W. I. Cho and B. W. Cho, 'Effect of $Al_2O_3$ coating on electrochemical performance of $LiCoO_2$ as cathode materials for secondary lithium batteries', J. Power Sources, 132, 249 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.049
  31. Y.-H. Chang and S. Y. Choi, 'Analyses on the Physical and Electrochemical Properties of $Al_2O_3$ Coated $LiCoO_2$', J. Korean Electrochem. Soc., 10, 184 (2007). https://doi.org/10.5229/JKES.2007.10.3.184
  32. H. Wang, W.-D. Zhang, L.-Y. Zhu and M.-C. Chen, 'Effect of $LiFePO_4$ coating on electrochemical performance of $LiCoO_2$ at high temperature', Solid State Ionics, 178, 131 (2007). https://doi.org/10.1016/j.ssi.2006.10.028
  33. A. Zhou, J. Xu, X. Dai, B. Yang, Y. Lu, L. Wang, C. Fan and J. Li, 'Improved high-voltage and high-temperature electrochemical performances of $LiCoO_2$ cathode by electrode sputter-coating with $Li_3PO_4$', J. Power Sources, 322, 10 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.092
  34. X. Zhu, K. Shang, X. Jiang, X. Ai, H. Yang and Y. Cao, 'Enhanced electrochemical performance of Mg-doped $LiCoO_2$ synthesized by a polymer-pyrolysis method', Ceram. Int., 40, 11245 (2014). https://doi.org/10.1016/j.ceramint.2014.03.170
  35. Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, G. Yan and J. Wang, 'Mg doping and zirconium oxyfluoride coating co-modification to enhance the high-voltage performance of $LiCoO_2$ for lithium ion battery', J. Alloys Compd., 621, 212 (2015). https://doi.org/10.1016/j.jallcom.2014.09.147
  36. J. Fu, D. Mu, B. Wu, J. Bi, H. Cui, H. Yang, H. Wu and F. Wu, 'Electrochemical properties of the $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ cathode material modified by lithium tungstate under high voltage', ACS Appl. Mater. Interfaces, 10, 19704 (2018). https://doi.org/10.1021/acsami.8b04167
  37. P. Elumalai, H. Vasan and N. Munichandraiah, 'A note on overpotential dependence of AC impedance data', J. Solid State Electrochem., 3, 470 (1999). https://doi.org/10.1007/s100080050183
  38. J. Kim, J. Lee, H. Ma, H. Y. Jeong, H. Cha, H. Lee, Y. Yoo, M. Park and J. Cho, 'Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries', Adv. Mater., 30, 1704309 (2018). https://doi.org/10.1002/adma.201704309
  39. Z. W. Lebens-Higgins, S. Sallis, N. V. Faenza, F. Badway, N. Pereira, D. M. Halat, M. Wahila, C. Schlueter, T.-L. Lee and W. Yang, 'Evolution of the Electrode-Electrolyte Interface of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Electrodes Due to Electrochemical and Thermal Stress', Chem. Mater., 30, 958 (2018). https://doi.org/10.1021/acs.chemmater.7b04782
  40. S. Verdier, L. El Ouatani, R. Dedryvere, F. Bonhomme, P. Biensan and D. Gonbeau, 'XPS study on $Al_2O_3$-and $AlPO_4$-coated $LiCoO_2$ cathode material for high-capacity Li ion batteries', J. Electrochem. Soc., 154, A1088 (2007). https://doi.org/10.1149/1.2789299
  41. J. Chen, L. Zhu, D. Jia, X. Jiang, Y. Wu, Q. Hao, X. Xia, Y. Ouyang, L. Peng and W. Tang, '$LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating', Electrochim. Acta, 312, 179 (2019). https://doi.org/10.1016/j.electacta.2019.04.153