• Title/Summary/Keyword: rate of resistance increase

Search Result 687, Processing Time 0.029 seconds

The Sheet Resistance Properties of Tungsten Nitride Thin films for Intergrated Circuit (IC소자용 질화 텅스텐 박막의 면저항 특성)

  • 이우선;정용호;김남오;정종상;유병수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.94-97
    • /
    • 1997
  • We investigated the sheet resistance properties of tungsten nitride thin films deposited by RF and DC sputtering system. It deposited at various conditions that determine the sheet resistance. The properties of the sheet resistance of these films were measured under various conditions. Sheet resistance analysed under the flow rate of the argon gas and contents of nitrogen from nitrogen-argon gas mixtures. We found that these sheet resistance were largely depend on the temperature of substrate, gas flow rate and RF power. Very high and low sheet resistance of tungsten films obtained by DC sputtering. As the increase of contents of nitrogen gas obtained from nitrogen-argon gas mixture, tungsten nitride thin films deposited by the reactive DC sputtering and the sheet resistance of these films were increased.

  • PDF

Effect of Respiratory Resistance Mask on Respiratory Function during Treadmill Exercise (트레드밀 운동 시 호흡 저항 마스크가 호흡 기능에 미치는 영향 )

  • Jong-Ho Kang;Tae-Sung ark
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • PURPOSE: Recently, the proportion of respiratory diseases has been increasing worldwide, and deaths from respiratory diseases in Korea are increasing. Maintaining a healthy respiratory function is a crucial factor in preventing respiratory diseases. There are various ways to improve respiratory function, such as respiratory muscle and aerobic exercises. In other countries, respiratory muscle exercise is performed using a respiratory resistance mask, but such research is insufficient in Korea. Therefore, this paper proposes a respiratory exercise program using a respiratory resistance mask. METHODS: This study was conducted by dividing healthy adults in their 20s into a treadmill exercise + respiratory resistance mask group and a treadmill exercise group into an experimental group and a control group. The changes in the subject's physical function before and after exercise were confirmed by cardiopulmonary exercise and pulmonary function tests. RESULTS: As a result of the study, the experimental and control groups increased their physical function significantly (p < .05). On the other hand, when the increase rate according to the group was confirmed, the increase rate of the experimental group was higher. CONCLUSION: Based on this study, it is necessary to develop a respiratory exercise program using respiratory exercise tools such as a respiratory resistance mask and provide it easily to various subjects.

Spalling Characteristics of High Performance Concrete According to Changes in PP Fiber Ratio and Type of Aggregate (PP섬유 혼입율 및 잔골재 종류 변화에 따른 고성능 콘크리트의 폭렬특성)

  • Jung, Hong-Keun;Kim, Won-Ki;Pei, Chang-Chun;Han, Min-Cheol;Yang, Seng-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.61-64
    • /
    • 2009
  • This study is reviewed fire resistance characteristics of high strength concrete according to changes in PP fiber mixing ratio and type of fine aggregate, and the results can be summarized as follows. As fire resistance characteristics, all plain crushed sands prevented spalling regardless of increase in mixing ratio of PP fiber. Mixtures other than the plain showed satisfactory spalling prevention when 0.05 % or more of PP fiber was mixed. After the fire resistance experiment, the plain showed 5.5 % of mass loss rate when fiber was not mixed and others could not be measured. According to increase in mixing ratio of fiber, river sand with fineness modulus of 2.2 showed most satisfactory result of 34 %${\sim}$42 %. Mass loss rate after fire resistance experiment was most satisfactory at about 10 % in the plain crushed sand without mixing of fiber, and all other mixes with 0.05 % PP fiber or more showed 5${\sim}$10 % loss rate.

  • PDF

Investigations of the Boron Diffusion Process for n-type Mono-Crystalline Silicon Substrates and Ni/Cu Plated Solar Cell Fabrication

  • Lee, Sunyong;Rehman, Atteq ur;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.147-151
    • /
    • 2014
  • A boron doping process using a boron tri-bromide ($BBr_3$) as a boron source was applied to form a $p^+$ emitter layer on an n-type mono-crystalline CZ substrate. Nitrogen ($N_2$) gas as an additive of the diffusion process was varied in order to study the variations in sheet resistance and the uniformity of doped layer. The flow rate of $N_2$ gas flow was changed in the range 3 slm~10 slm. The sheet resistance uniformity however was found to be variable with the variation of the $N_2$ flow rate. The optimal flow rate for $N_2$ gas was found to be 4 slm, resulting in a sheet resistance value of $50{\Omega}/sq$ and having a uniformity of less than 10%. The process temperature was also varied in order to study its influence on the sheet resistance and minority carrier lifetimes. A higher lifetime value of $1727.72{\mu}s$ was achieved for the emitter having $51.74{\Omega}/sq$ sheet resistances. The thickness of the boron rich layer (BRL) was found to increase with the increase in the process temperature and a decrease in the sheet resistance was observed with the increase in the process temperature. Furthermore, a passivated emitter solar cell (PESC) type solar cell structure comprised of a boron doped emitter and phosphorus doped back surface field (BSF) having Ni/Cu contacts yielding 15.32% efficiency is fabricated.

Electroplating on the Lead Frames Fabricated from Domestic Copper Plate (국산동판을 사용한 리드프레임 도금기술에 관한 연구)

  • Jang, Hyeon-Gu;Lee, Dae-Seung
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF

Basic Characteristics of High Performance Concrete Mixing Organic Fiber (유기섬유 복합 혼입 고성능 콘크리트의 기초적 특성)

  • Park, Byung-Kwan;You, Ji-Young;Lee, Joung-Ah;Jin, Cheng-Ri;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.87-91
    • /
    • 2008
  • The study examined fire resistance of concrete followed by change of mixed rate in PP and NY composite fiber and the results were as follows. In the event of fluidity in concrete not set, plane satisfied 600±100, its target slump flow, and fluidity was reduced as organic fiber's mixed rate was increased. Air amount satisfied 3.0±1.0, its target air amount, and didn't have distinct differences in reduction and increase according to organic fiber's kind and change of its mixed rate. However, it had a tendency that fluidity was reduced as the mixed rate was increased. In characteristics of hardening concrete, the 28th day compressive strength followed by organic fiber's kind and change of its mixed rate didn't have a lot of differences and satisfied high strength scope as about 70MPa. In spalling characteristics after fire resistance test, spalling was happened in non-mixture, plane combination, and P1N0. In other combinations, spalling resistance was happened. The relic compressive strength rate was 56%, the best condition, in P3N1(PP0.03%, NY0.01% compositeness) mixing PP fiber with NY fiber at once.

  • PDF

Permeation Behavior of Surfactant through Membrane (계면활성제의 분리막에 대한 투과거동)

  • Ahn, Soon-Cheol;Lee, Kwang-Rae;Kim, Ki-Chang
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.259-265
    • /
    • 1998
  • The molecular weights of surfactant SDS(M.W. 288) and SLS(M.W. 420) are smaller than the molecular weigh cut-off of cellulose acetate membrane used in this study. However, 20% of SDS and 67% of SLS were rejected by cellulose aectate membrane. The higher rejection rate of SLS than that of SDS is due to the longer hydrophobic chain and greater molecular weight. There was no resistance to permeation rate by membrane fouling. Most of permeation resistance was due to the concentration polarization. Permeation rate was declined with operating time and with increase in concentration of surfactant due to concentration polarization.

  • PDF

OPTIMZATION OF A PIN FIN BASED ON THE INCREASING RATE OF HEAT LOSS

  • Kang, Hyung-Suk
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • A pin fin is optimized based on the increasing rate of heat loss by using a two-dimensional analytic method. The optimum heat loss, corresponding optimum thermal resistance and fin length are presented as a function of the fin base thickness, convection characteristic numbers ratio, fin outer radius and ambient convection characteristic number. One of the results shows that both the optimum heat loss and fin length decrease linearly whereas the optimum thermal resistance increases very slightly with increase of the fin base thickness.

  • PDF

Influence of pitch on over-current characteristics of HTS tapes (고온초전도 선재의 과전류 통전 특성에 대한 피치의 영향)

  • 임성우;황시돌;최효상;김헤림;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.507-510
    • /
    • 2002
  • In economical points of view, AC loss of high temperature superconducting devices is considered as a serious problem that must be solved. Expecially, in case of HTS cables, HTS tapes are wound helically on the former to reduce AC loss. Critical characteristics of HTS tapes, however, are influenced by mechanical stress as well as electrical, temperature, and magnetical factors. The purpose of this study is to investigate the over current characteristics of HTS tapes given mechanical stress when they are wound on the former. We prepared HTS tapes with the pitch angle 20$^{\circ}$, length 25cm as well as tapes with pitch angle 0$^{\circ}$. When current of over 200A$\_$rms/ was applied, we found out that there are differences to the rate of resistance increase between the case of pitch angle 20$^{\circ}$and that of 0$^{\circ}$. The rate of resistance variation in HTS tapes of pitch angle 20$^{\circ}$increased more slowly than that of pitch angle 0$^{\circ}$. As a result, we concluded that if critical characteristics of HTS tapes are degraded by any external factor, when over current is applied, the current limiting characteristics in HTS tapes won't be able to be expected any more.

  • PDF

Influence of ITO Thickness on the Deformation and Cracking Behaviors of ITO/PET Sheets (ITO층의 두께에 따른 ITO/PET sheet의 변형거동 및 균열 형성 거동)

  • Kim, Jin-Yeol;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this study, the stress-strain response and the cracking behaviors of ITO film on a PET substrate are investigated. The cracking behaviors of ITO thin films deposited on a thermoplastic semi-crystalline polymer developed for flexible display applications was investigated by means of tensile experiments equipped with an electrical measurement apparatus and an in-situ optical microscope. Electrical resistance increased gradually in the elastic-to-plastic transition region of the stress strain curves and cracks formed. Numerous cracks were found in this region, and the increase of the resistance was linked to the cracking of ITO thin films. Upon loading, the initial cracks perpendicular to the tensile axis were observed at about 1% of the total strain. They propagated to the entire sample width as the strain increased. The spacing between the horizontal cracks is thought to be determined by the fracture strength and the thickness of the ITO film as well as by the interfacial strength between the ITO and PET. The effect of the strain rate on the cracking behavior was also investigated. The crack density increased as the strain increased. The spacing between the horizontal cracks (perpendicular to the stress axis) increased as the strain rate decreased. The increase of the crack density as the strain rate decreased can be attributed to the higher fraction of the plastic strain to the total strain at a given total strain. The higher critical strain for the onset of the increase in the resistance and the crack initiation of the ITO/PET with a thinner ITO film (300 ohms/sq.) suggests a higher strength of the thinner ITO film.