• 제목/요약/키워드: rate of resistance increase

검색결과 687건 처리시간 0.023초

Ti-6Al-4V 고강도 볼트 성형 기술 개발 (Hot Forging Process of High Strength Ti-6Al-4V Bolt)

  • 김정한;이채훈;홍재근;김재호;염종택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.87-90
    • /
    • 2008
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

  • PDF

Ti-6Al-4V 고강도 볼트의 성형성에 미치는 표면산화효과 (Effect of Thermal Oxidation Coating on the Hot Forging Process of High Strength Ti-6Al-4V Bolt)

  • 김정한;이채훈;홍재근;김재호;염종택
    • 소성∙가공
    • /
    • 제18권3호
    • /
    • pp.251-255
    • /
    • 2009
  • Since fastener bolt for airplane require high specific strength and corrosion resistance, Ti-6Al-4V alloy is widely used. However, the Ti-6Al-4V bolt is generally manufactured by cutting and rolling because of their poor workability. The aim of present work is to develop hot forming technology for high strength Ti-6Al-4V. Various heat-treatments were applied to specimen in order to increase hot-workability and prevent galling with die. Multiple forging were simulated with FE code to determine optimum process parameters including specimen temperature, strain rate, local strain, and thermal shrinkage. Forged samples were heat-treated again to increase their mechanical properties.

Selective Laser Melting 방식으로 적층가공된 Ti-6Al-4V 합금의 내마모성 특성에 미치는 고온 UNSM 처리 영향에 대한 연구 (Effects of High-temperature UNSM Treatment on Wear Resistance of Ti-6Al-4V Alloy Prepared by Selective Laser Melting)

  • 산성충호;노준석;편영식;아마노프 아웨즈한
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.47-54
    • /
    • 2020
  • In this study, the effects of ultrasonic nanocrystal surface modification (UNSM) treatment at room and high temperatures (RT and HT of 400℃) on friction and wear behavior of Ti-6Al-4V alloy prepared by selective laser melting (SLM) were investigated. The objective of this study is to improve the mechanical properties and frictional behavior of Ti-6Al-4V alloy by UNSM treatment. Dry friction and wear tests were conducted using a ball-on-disk method at RT with a bearing steel as the counter ball. Due to the high HT and UNSM treatment, the surface hardness tended to increase and surface roughness tended to reduce. X-ray diffraction (XRD) analysis showed that nanocrystallization structure and compressive residual stress were formed at the surface layer after UNSM treatment at both RT and HT. After UNSM treatment, it was observed that the wear rate was reduced by about 6% for the specimen treated at RT and a 28% reduction for the specimen treated at HT in comparison with the untreated one. Based on scanning electron microscope (SEM) images showed that the damage caused by fatigue wear occurred in the wear track of the heat-treated specimen, and it is believed to be the cause of the highest wear rate. Mechanical properties and wear resistance of Ti-6Al-4V alloy were improved and prospect of industrial application was confirmed. Further research is still required to improve the characteristics of SLM Ti-6Al-4V alloy to the level of wrought Ti-6Al-4V alloy.

천연해수 중 음극방식 응용 원리에 의해 제작한 Mg(OH)2 코팅막의 밀착성 및 내식성 (Adhesion and Corrosion Resistance of Mg(OH)2 Films Prepared by Application Principle of Cathodic Protection in Natural Seawater)

  • 이승효;김혜민;임경민;김병구;이명훈
    • 한국표면공학회지
    • /
    • 제46권1호
    • /
    • pp.1-8
    • /
    • 2013
  • Cathodic current on a metal tends to increase the $OH^-$ neighboring to the metal surface, especially during electro-deposition in seawater. The increased pH at metal/seawater interface results in precipitation of brucite crystal structure-$Mg(OH)_2$ as following formula; $Mg^{2+}+2OH^-{\rightarrow}Mg(OH)_2$, that is typical mechanism of the main calcareous deposits-compound in electro deposited coating films. In this study, the effects of anode and current density on deposition rate, composition structure and morphology of the deposited films were systematically investigated by scanning electron microscopy(SEM) and x-ray diffraction(XRD), respectively in order to overcome the problems such as deposition rate and a weak adhesion between deposit film and metal surface. The adhesion and corrosion resistance of the coating films were also evaluated by anodic polarization test. The electro-deposited film formed by using AZ31-Mg anode had the most appropriate physical properties. Weight gain of electro-deposit films increased with increasing cathodic current. Electro-deposit prepared at $5A/cm^2$ current density shows better adhesion than that formed at $8{\sim}10A/cm^2$.

내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지 (Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing)

  • 최재호;변영민;김형준
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF

용체화처리한 AZ91-X%Sn 마그네슘 합금의 부식 저항성 변화 (Change in Corrosion Resistance of Solution-Treated AZ91-X%Sn Magnesium Alloys)

  • 문정현;전중환
    • 열처리공학회지
    • /
    • 제28권5호
    • /
    • pp.229-238
    • /
    • 2015
  • The effects of Sn addition and solution treatment on corrosion behavior were studied in AZ91 magnesium casting alloy. The addition of 5%Sn contributed to the introduction of $Mg_2Sn$ phase, to the reduction in dendritic cell size and to the increase in the amount of secondary phases. After the solution treatment, trace amount of $Al_8Mn_5$ particles were observed in the ${\alpha}$-(Mg) matrix for the AZ91 alloy, while $Mg_2Sn$ phase with high thermal stability was additionally found in the AZ91-5%Sn alloy. Before the solution treatment, the AZ91-5%Sn alloy had better corrosion resistance than the Sn-free alloy, which is caused by the enhanced barrier effect of the (${\beta}+Mg_2Sn$) phases formed more continuously along the dendritic cell boundaries. It is interesting to note that after the solution treatment, the corrosion rate of both alloys became increased, but the Sn-added alloy showed higher corrosion rate than the Sn-free alloy. The microstructural examination on the corroded surfaces revealed that the remaining $Mg_2Sn$ particles in the solution-treated AZ91-5%Sn alloy play a role in accelerating corrosion by galvanic coupling with the ${\alpha}$-(Mg) matrix.

부분안전계수를 이용한 경사식 방파제의 최적설계기법 (Optimal Design of Rubble Mound Breakwater Used by Partial Safety Factor Method)

  • 이동훈;민석진;김성득
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.23-31
    • /
    • 2003
  • As there are so many uncertainties associated with using the determinism analysis method in the design of rubble mound breakwater, it is impossible for a designed construction to provide ultimate stability. First of all, due to the uncertainty of Load and Resistance, a safety level concerning the destruction mode of construction must be given. Then, the optimization design should be processed. After all, we can say that it is a more reasonable design method than the design used by the stability rate. In this study, an established design process is accomplished using Hudson's equation and an economic analysis with the breakwater's section is also conducted. Hudson's equation is compared to Van der Meer's equation. These results are utilized to drop a damage rate, increase the stability of construction, and determine the optimization section of the breakwater.

철도차량용 레졸계 페놀수지의 내열특성 비교 (Fire Characteristics Comparison of Resol-type Phenolic Resin for Interial Materials of Passenger Train)

  • 이철규;이덕희;정우성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.277-283
    • /
    • 2004
  • The time to ignition, heat release rate characteristics and carbon monoxide yield of fiber reinforced and sandwich phenol resin were investigated with cone calorimeter. The fire characteristics of unsaturated polyester, mostly being applied to the existing passenger train, and phenolic resin were compared. Thermal gravimetric analysis(TGA) was used to monitor the degree of thermal decomposition for the phenolic resin. According to the cone calorimeter data, the time to ignition, heat release rate and CO yield was faster and higher as the external heat flux increase. Under the same heat flux, the time to ignition of sandwich type phenolic resin was shorter than that of fiber reinforced. The result of comparison between unsaturated polyester and phenolic resin was that phenolic resin was shown to have better fire resistance than that of unsaturated polyester.

  • PDF

펠레트 충전층 전극 반응기의 특성 -흑연 펠레트 전극- (The Behavior of Pellet Packed-bed Electrodes Reactor -Graphite Pellet Electrode-)

  • 김학준
    • 공업화학
    • /
    • 제3권4호
    • /
    • pp.657-662
    • /
    • 1992
  • 흑연 펠레트 전극으로 채워진 복극성 고정상 충전층 전극 반응기에 대하여 등가회로 모델을 적용하여 반응기에 가해진 전류에 대한 복극성 전극에 흐른 Faradaic 전류의 비를 전해액의 전도도와 순환속도에 대하여 검토하였다. 전전류에 대한 Faradaic 전류의 비는 인가전류(전압)에 따라 증가하며, 전해액 전도도와 액 순환속도의 증가에 따라 감소하였다.

  • PDF

리튬 망간산화물 박막에서의 전극 반응의 개선 (Improvement of Electrochemical Reaction Kinetics in Lithium Manganese Oxide Thin Films)

  • 박영신;김찬수;주승기
    • 전기화학회지
    • /
    • 제3권2호
    • /
    • pp.96-99
    • /
    • 2000
  • 리튬 망간 산화물 박막의 고율 방전 특성을 향상시키기 위하여 사진 식각 법을 이용하여 미세 패턴된 양극 박막을 제조하였다. 방전 전류 밀도를 달리하여 측정한 결과, 리튬 이온의 intercalations kinetic레 관계하는 전하 전달 저항 값이 감소하게 되어 고율 방전 특성이 향상되었다.