• Title/Summary/Keyword: rate of heating

Search Result 1,918, Processing Time 0.025 seconds

Influence of the SPS heating rate on the optical and mechanical properties of Y2O3-MgO nanocomposites

  • Yong, Seok-Min;Choi, Doo Hyun;Lee, Kisu;Ko, Seok-Young;Cheong, Dong-Ik
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.59-62
    • /
    • 2019
  • Y2O3-MgO nanocomposites are promising materials for hypersonic infrared windows and domes due to their excellent midIR transmittance and mechanical properties. In this work, influence of SPS heating rate on the microstructure, IR transmittance, and mechanical properties of Y2O3-MgO nanocomposites was investigated. It was found that the average grain size decreases with a decreasing heating rate, which can be attributed to high defect concentration by rapid heating and deformation during densification. Also, the residual porosity decreases with a decreasing heating rate, which is ascribed to the enhancement of grain boundary diffusion by a large grain-boundary area (a small grain size). Consequently, high transmittance and hardness were attained by the low heating rate. On the other hand, the mechanical strength showed little difference with the heating rate change, which is somewhat different from the general knowledge on ceramics and will be discussed in this letter.

Evaluation on Weight Loss of Spalling Control Fiber by Heating Rate (폭렬저감을 위한 섬유의 가열속도에 따른 중량감소평가)

  • Yu, Sung-Il;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Young-Wook;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.32-33
    • /
    • 2014
  • In this study, evaluation on weight loss properties of spalling control fiber with heating rates has been conducted. For evaluation of this study, 3types of organic fibers(Polyethylene, Polypropylene, Nylon) are used as spaling control fiber. Also, to evaluate the effect of heating rate to spallin control fiber, heating rates are set as 10, 25℃/min. As a result, the start time of weight loss of fiber with various heating rate was delayed as heating rate was increased.

  • PDF

A Manufacturing of NiTi Shape Memory Alloy by Combustion Synthesis (연소합성에 의한 NiTi 형상기억 합금의 제조)

  • Shon, I.J.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.120-126
    • /
    • 1995
  • The effects of heating rate on the combustion temperature, the ignition temperature, the microstrurcture and the shape memory ability of products formed by combustion were investigated. The ignition temperature decreased with increasing heating rate. Combustion temperature and ${\Delta}T$(difference temperature between the ignition temperature and the combustion temperature) increased with increasing heating rate. The grain size of the product increased with increasing heating rate. Combustion synthesis did not completely occur below the heating rate of $10^{\circ}C/min$. NiTi intermetallic compound was completely formed at the heating rate of $600^{\circ}C/min$ and the product by combustion method had a good shape memory effect.

  • PDF

A Fundamental Study On the Self-Sufficient Heating Energy for Residential Building (주거용 건물의 난방 에너지 자립을 위한 기초 연구)

  • Son, Sun-Woo;Baek, Nam-Choon;Suh, Seung-Jik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.255-258
    • /
    • 2009
  • Leading developed countries have studied energy self-sufficient houses such as zero or low energy buildings to reduce energy consumption for buildings since the early 1990s. Moreover, some developed countries have actually constructed self-sufficient houses and operated them for demonstration, expanding use of such houses. Korea has also established Zero Energy Solar House(ZeSH) and studied energy independence. Therefore, this study analyzed research result regarding ZeSH, self-sufficient energy house hold of Korea, found out technologies used for heating energy independence, used building interpretation program(ESP_r) to evaluate performance of each factors and analyzed energy reduction quantitatively. Results from the research are as follows: Reduction rate of actual detached house's heating load was also analyzed quantitatively depending on application of each technology. When each factor was applied step-by-step, annual reduction rate of heating load depending on increase in insulation thickness reached 6.6~22.2 %. Annual reduction rate of heating load depending on increase insulation thickness, and change in window heating performance and area ratio reached 31.5 %. Annual reduction rate of heating load through high-sealing and high-insulation depending on change in leakage rate reached 40.0~88.9 %. Annual reduction of heating load, when Mass Wall and attached sun space was applied were applied reached 28.5~39.2 %, respectively.

  • PDF

Effect of the Heating Rate on the Microstructure and Fracture Toughness of Silicon Nitride Ceramics (소결시의 승온속도가 질화규소 요업체의 미세조직과 파괴인성에 미치는 영향)

  • 이상훈;이재도;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1227-1232
    • /
    • 1995
  • Effect of heating rate on the microstructure of the silicon nitride ceramics has been investigated. The specimens with composition of 92Si3N4-6Y2O3-2Al2O3 (in wt%) were sintered at 176$0^{\circ}C$ under 127 kPa for 3h in N2 atmosphere at various heating rates from 1 to 10$0^{\circ}C$/min. The grain size of larger than 2${\mu}{\textrm}{m}$ and less than 1${\mu}{\textrm}{m}$ were measured and compared for the specimens. Regardless of heating rate, grain size of all the specimens showed bimodal distributions and the fracture toughness remained in the range of 5.53~5.72 MPa.m1/2. However, the aspect ratio of the grains of diameter above 2${\mu}{\textrm}{m}$ increased with the heating rate while their grain size and volume fraction decreased.

  • PDF

A Study on the Strategy to Maintain Optimal Flow-rate and Pressure of the Piping System for Individual Heating (개별 난방방식에서의 배관 내 절정 유량 및 압력유지에 관한 연구)

  • Hong Seok-Jin;Ryu Seong-Ryong;Seok Ho-Tae;Yeo Myoung-Souk;Kim Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.17 no.2
    • /
    • pp.11-18
    • /
    • 2006
  • For the more comfortable thermal environment in residential buildings, it was necessary for variable components like as automatic flow limiting valves and/or balancing valves in hydronic system. And, these components had an effect on flow-rate and pressure inside pipe. In this case, the incompatibility between the design for the heating system and the selection of equipment was the causes of several problems in heating pipe network. In this study, we peformed measurements and analyses of flow rate and pressure inside pipe for radiant floor heating in residential buildings through field surveys and experiments in order to find out the actual conditions and problems. On the basis of this, we suggested the approach for the optimal flow-rate and pressure maintaining inside pipe in individual heating system.

Effect of Heating Rate and Keeping Time at Maximum Temperature on the Properties of Woodceramics Made from Thinned Logs (승온속도 및 최고온도 유지시간이 간벌재로 제조된 우드세라믹의 성질에 미치는 영향)

  • Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.38-44
    • /
    • 2005
  • This research investigated the variation of density, the weight loss, dimensional shrinkage and heat conduction by the heating rate and keeping time at maximum temperature of woodceramics, when sawdust boards made from thinned logs of Pinus densiflora, Larix kaemferi and Pinus koraiensis were impregnated with phenol-formaldehyde resin, and then were formed by heating rate ($2^{\circ}C/min{\sim}6^{\circ}C/min$) and keeping time at maximum temperature (1~5 h). As the heating rate increased, the density and thickness shrinkage decreased, but weight loss and linear shrinkage increased. The more the keeping time at maximum temperature, the greater the linear shrinkage and thickness shrinkage. The heating conduction was superior at the heating rate is $2^{\circ}C/min$ and the keeping time at maximum temperature of 2 hs.

Effect of Moisture Migration in Concrete with Hating Rate on Concrete Spalling (가열속도에 따른 콘크리트 내부의 수분이동이 폭렬발생에 미치는 영향)

  • Choe, Gyeong-Cheol;Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Hong-Seop;Yoon, Min-Ho;Hwang, Ui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.246-247
    • /
    • 2017
  • In this study, it reviewed the effect of moisture migration in concrete with heating rate on concrete spalling. Concrete specimens with compressive strength 30MPa and 110MPa are used and its size is □100×100×h200mm. And, two kinds of heating rate are set such as IS0 834 and 1℃/min. As a result, in the concrete specimen exposed to ISO 834 standard heating condition, moisture could migrate through pore network and surface concrete pieces fall out by generating moisture clog near the surface in 110MPa concrete specimen. Meanwhile, In the case of concrete specimens exposed to 1℃/min. heating condition, it is appeared that moisture could not migrate because temperature is distributed uniformly. Therefore, surface spalling is not occurred with low heating rate. However, in the case of 110MPa concrete specimen is exploded even though it heated by low heating rate.

  • PDF

Synthesis of NaY Zeolites by Microwave and Conventional Heating (마이크로파 및 기존 가열 방법에 의한 제올라이트 NaY의 합성)

  • Choi, Ko-Yeol;Conner, W. Curtis
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2007
  • NaY zeolites synthesized by microwave heating were compared with those obtained by conventional heating. When the same temperature increasing rates were adopted in both heating methods, the microwave heating shortened the induction period and enhanced the rate of crystallization of NaY zeolites compared with the conventional heating. Irrespective of microwave radiation, the fast temperature increasing rate also shortened the induction time and enhanced the crystallization of NaY zeolites. The crystal sizes of NaY zeolites were large under the fast temperature raise of the reaction mixture and became larger by microwave radiation. At the same time, the fast temperature increasing rate has reduced the energy consumption due to the fast completion of reaction during the synthesis of NaY zeolite. The energy consumption in the conventional ethylene glycol bath was lower than that in the microwave oven with the same temperature increasing rate in this study, which means that the energy efficiency is not always high in microwave heating. If the temperature increasing rate is carefully controlled, however, NaY zeolite can be produced with high energy efficiency in the microwave oven.

Effect of Heating Rate on the Behavior of the Flame Front in the Pulverized-Coal Flame (미분탄화염에서 가열률이 화염선단의 거동에 미치는 영향)

  • Cho, Han Chang;Park, Jung Kyu;Shin, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.687-694
    • /
    • 1999
  • An experimental study was carried out in two laboratory-scale reactors to investigate the effect of heating rate on the behavior of flame front in a pulverized coal flame. Each. reactors had different heating mechanisms. For reactor A losing large heat through transparent quartz wall. pulverized coal particles were ignited by secondary air of 1050K. Flame front could be visualized through the transparent wall. Reactor B was insulated with castable refractory to minimize the heat loss through the reactor wall and accompanied with secondary air of 573K. Flame front was estimated from the gas temperature and species concentration measured using R-type thermocouple(Pt-Pt/Rh 13%) and gas chromatograph at various coal-air ratios and swirl intensities. The flame front position was closely related with the magnitude of heating rate. The heating rate for lifted flame was of the order of $10^4$ to $10^5K/s$ and for coal Ignition at least over $10^4K/s$. The heating mechanism had little impact on the extinction limits. The weak swirl number of 0.68 forced the flame front to move toward the upstream by the rapid mixing of coal and air. The primary/secondary momentum ratio was an inappropriate variable to distinct the liftoff of flame.