• Title/Summary/Keyword: rat ventricle

Search Result 54, Processing Time 0.027 seconds

Myocardial degeneration in Russian rat snake (Elaphe schrenckii)

  • Tiwari, Shraddha;Aufa, Sulhi;Park, Hyung-Hun;Cho, Ho-Seong;Park, Byung-Yong;Oh, Yeonsu
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.3
    • /
    • pp.217-220
    • /
    • 2018
  • A female Russian rat snake, Elaphe schrenckii, was presented for loss of movement. Physical examination showed the swelling in the area of heart. Radiographic examination revealed cardiomegaly, pericardial effusion, and a soft opacity in the area of swelling. Although pericardiocentesis to remove fluid out from the heart as well as vigorous treatments were given to the Russian rat snake, it died during treatments. Postmortem examination confirmed pericardial effusion of pale yellow, translucent fluid with mild dilation of the right atrium and ventricle. Formalin -fixed paraffin embedded tissue sections were stained with routine H&E and the classical von Kossa's method for histopathological demonstration. Histopathological examination revealed multifocal calcification in myocardium and consists of the displacement of muscular fiber by limy deposits. Congestive heart failure was suspicious for the snake when it was alive. In wild reptiles, muscle degeneration has been reported with nutrition disorders but the present case is the first report of myocardial degeneration in a Russian rat snake and contributes to the rare reports of cardiac disease in snakes.

Different Distribution of the ${alpha}_{2},Na^+,K^+-ATPase lsoform between Rat Atria and Ventricles$

  • Lee, Jeung-Soo;Lee, Shin-Woong;Wallick, Earl-T
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.381-385
    • /
    • 1996
  • Rat ventricles respond with a biphasic positive inotropic effect to ouabain, low-dose and high-dose effects but rat atria with only a monophasic high dose effect. In an effect to understand the difference in response to ouabain of two tissues between rat atria and ventricles the levels of the $a_{2}$ -isoform of the $Na^{+}$, $K^{+}$-ATPase which has higher affinity for ouabain than the $a_{1}$-iso-form were determined by a $[^{3}H]$ouabain binding assay. The yield of protein per gram wet weight was about 47 mg for atria and 100 mg for ventricles. The $K_{d}$ values of ouabain for the high-affinity ouabain binding site $(a_{2} -isoform)$ were nearly the same (230 nM) in the atria and ventricles. However, the numbers of the $a_{2}$-isoform $(B_{max})$ per mg protein were approximately half in the atria. When the binding data were expressed in unit per gram tissue wet weight, the numbers of $a_{2}$ -isoform in the atria was about 25% of that in the ventricles. THese results demonstrate that the $a_{2}$ -isoform of the $Na^{+}$, $K^{+}$-ATPase in the rat atria could be detected by $[^{3}H]$ouabain binding assay and the levels of this isoform are too low to show the low-dose effect of ouabain.

  • PDF

Expression of $Ca^{2+}$-activated $K^+$ Channels and Their Role in Proliferation of Rat Cardiac Fibroblasts

  • Choi, Se-Yong;Lee, Woo-Seok;Yun, Ji-Hyun;Seo, Jeong-Seok;Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • Cardiac fibroblasts constitute one of the largest cell populations in the heart, and contribute to structural, biochemical, mechanical and electrical properties of the myocardium. Nonetheless, their cardiac functions, especially electrophysiological properties, have often been disregarded in studies. $Ca^{2+}$-activated $K^+\;(K_{Ca})$ channels can control $Ca^{2+}$ influx as well as a number of $Ca^{2+}$-dependent physiological processes. We, therefore, attempted to identify and characterize $K_{Ca}$ channels in rat Cardiac fibroblasts. First, we showed that the cells cultured from the rat ventricle were cardiac fibroblasts by immunostaining for discoidin domain receptor 2 (DDR-2), a specific fibroblast marker. Secondly, we detected the expression of various $K_{Ca}$ channels by reverse transcription polymerase chain reaction (RT-PCR), and found all three family members of $K_{Ca}$ channels, including large conductance $K_{Ca}$ (BK-${\alpha}1-\;and\;-{\beta}1{\sim}4$subunits), intermediate conductance $K_{Ca}$ (IK), and small conductance $K_{Ca}$ (SK$1{\sim}4$ subunits) channels. Thirdly, we recorded BK, IK, and SK channels by whole cell mode patch clamp technique using their specific blockers. Finally, we performed cell proliferation assay to evaluate the effects of the channels on cell proliferation, and found that the inhibition of IK channel increased the cell proliferation. These results showed the existence of BK, IK, and SK channels in rat ventricular fibroblasts and involvement of IK channel in cell proliferation.

Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane

  • Park, Sun Hwa;Kim, Ami;An, Jieun;Cho, Hyun Sung;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.529-543
    • /
    • 2020
  • In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+ channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.

Binding Profiles of Oxomemazine to the Muscarinic Receptor Subtypes (Oxomemazine의 Muscarinic Receptor Subtypes에 대한 결합성질)

  • Lee, Shin-Woong;Kim, Jeung-Gu
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.49-57
    • /
    • 1994
  • The binding properties of oxomemazine to muscarinic receptors using the ability of oxomemazine to inhibit $[^3H]QNB$ binding in membrane fractions of rat cerebrum and guinea pig ventricle and ileum were investigated. $[^3H]QNB$ bound to a single class of muscarinic receptors with a dissociation constant of approximately 60 pM in three tissue preparations. Pirenzepine and oxomemazine inhibited $[^3H]QNB$ binding in cerebrum with a Hill coefficient lower than unity, and the inhibition data were best described by a two-site model. The relative densities of the high $(M_1)\;and\;low\;(M_2)$ affinity sites for pirenzepine were 60 and 40%, with corresponding Ki values of 16 and 431 nM, and those $(O_H\;and\;O_L)$ for oxomemazine 40 and 60%, with corresponding Ki values of 80 and 1350 nM. However, the inhibition data of both drugs vs $[^3H]QNB$ in ventricle and ileum appeared to obey the law of mass-action (Hill coefficient close to 1). The apparent Ki values of pirenzepine were 850 and 250 nM, and those of oxomemazine 1460 and 570 nM in ventricle and ileum, respectively. Thus, oxomemazine like pirenzepine has high affinity for cerebrum, moderate affinity for ileum and low affinity for ventricle. These results suggest that oxomemazine could recognize the muscarinic receptor subtypes with a high affinity for the $M_1$ sites.

  • PDF

Presence of Pituitary Specific Transcription Factor Pit-1 in the Rat Brain: Intracerebroventricular Administration of Antisense Pit-1 Oligodeoxynucleotide Decreases Brain Prolactin mRNA Level

  • Tae Woo Kim;Hyun-Ju Kim;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.311-317
    • /
    • 1999
  • Prolactin (PRL) was reported to be locally synthesized in many brain areas including the hypothalamus, thalamus (TH) and hippocampus (HIP). In the pituitary lactotrophs, PRL synthesis is dependent upon a pituitary-specific transcription factor, Pit-1. In the present study, we attempted to identify Pit-1 or Pit-1-like protein in brain areas known as the synthetic sites of PRL. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis showed the same Pit-1 transcripts in brain areas such as the medial basal hypothalamus (MBH), preoptic area (POA), TH, and HIP with the Pit-1 transcripts in the anterior pituitary (AP). Electrophoretic mobility shift assay (EMSA) was run with nuclear protein extracts from brain tissues using a double strand oligomer probe containing a putative Pit-1 binding domain. Shifted bands were found in EMSA results with nuclear proteins from MBH, POA, TH and HIP. Specific binding of the Pit-1-like protein was further confirmed by competition with an unlabeled cold probe. Antisense Pit-1 oligodeoxynucleotide (Pit-1 ODN), which was designed to bind to the Pit-1 translation initiation site and block Pit-1 biosynthesis, was used to test Pit-1 dependent brain PRL transcription. Two nmol of Pit-1 ODN was introduced into the lateral ventricle of a 60-day old male rat brain. RNA blot hybridization and in situ hybridization indicated a decrease of PRL mRNA signals by the treatment of Pit-1 ODN. Taken together, the present study suggests that Pit-1 may play an important role in the transcriptional regulation of local PRL synthesis in the brain.

  • PDF

Perfusion Techniques Using the Modified Isolated Working Rat Heart Model (흰쥐의 심장을 이용한 Modified Isolated Working Heart Perfusion Technique)

  • Lee, Chong-Kook;Choi, Hyeong-Ho
    • Journal of Chest Surgery
    • /
    • v.13 no.4
    • /
    • pp.338-345
    • /
    • 1980
  • We have modified an isolated perfusion rat heart model of cardiopulmonary bypass, with which we are able to screen the effects of various cardioplegic solutions and hypothermia upon the ability of the heart to survivie during and recover from period of ischemic arrest. The modified experimental model was differed from the original as follow : a heat coil chamber of atrial and aortic reservoir provided temperature control, and the perfusate was gassed with each pure oxygen and pure carbon dioxide in 95:5 ratio. The Langendorff perfusion was initiated for a 10 minute period by introducing perfusate at $37^{\circ}C.$ into the aorta from the aortic reservoir located 100 cm above the heart. The isolated perfused working rat heart model was a left heart preparation in which oxygenated perfusion medium (at $37^{\circ}C.$) entered the cannulated left atrium at a pressure of 20 cm $H_{2}O$ and was passed to the ventricle, from which it was sponeously elected(no electrical pacing) via an aortic cannula, against a hydrostatic pressure of 100cm $H_{2}O$. during this working period various indices of cardiac functin were measured. The cardiac functions were stable for over 3 hour with perfusion of Krebs-Henseleit bicarbonate buffer solution containing only glucose (11.1 mM/L). The percentage of cardiac functins were maintained about 94% on heart rate, 80.6% on peak aortic pressure, 87.7% on coronary flow and 76.3% on aortic flow rate after 3 hour of working heart perfusion at a pressure of 20 cm $H_{2}O$. We believe this preparation to be a good biochemical model for the human heart which offers many advantages including economic, speed of preparation, reproducibility, and the ability to handle large numbers.

  • PDF

Effects of a Proteasome Inhibitor on Cardiomyocytes in a Pressure-Overload Hypertrophy Rat Model: An Animal Study

  • Kim, In-Sub;Jo, Won-Min
    • Journal of Chest Surgery
    • /
    • v.50 no.3
    • /
    • pp.144-152
    • /
    • 2017
  • Background: The ubiquitin-proteasome system (UPS) is an important pathway of proteolysis in pathologic hypertrophic cardiomyocytes. We hypothesize that MG132, a proteasome inhibitor, might prevent hypertrophic cardiomyopathy (CMP) by blocking the UPS. Nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and androgen receptor (AR) have been reported to be mediators of CMP and heart failure. This study drew upon pathophysiologic studies and the analysis of $NF-{\kappa}B$ and AR to assess the cardioprotective effects of MG132 in a left ventricular hypertrophy (LVH) rat model. Methods: We constructed a transverse aortic constriction (TAC)-induced LVH rat model with 3 groups: sham (TAC-sham, n=10), control (TAC-cont, n=10), and MG132 administration (TAC-MG132, n=10). MG-132 (0.1 mg/kg) was injected for 4 weeks in the TAC-MG132 group. Pathophysiologic evaluations were performed and the expression of AR and $NF-{\kappa}B$ was measured in the left ventricle. Results: Fibrosis was prevalent in the pathologic examination of the TAC-cont model, and it was reduced in the TAC-MG132 group, although not significantly. Less expression of AR, but not $NF-{\kappa}B$, was found in the TAC-MG132 group than in the TAC-cont group (p<0.05). Conclusion: MG-132 was found to suppress AR in the TAC-CMP model by blocking the UPS, which reduced fibrosis. However, $NF-{\kappa}B$ expression levels were not related to UPS function.

In Vivo Protein Transduction: Delivery of PEP-1-SOD1 Fusion Protein into Myocardium Efficiently Protects against Ischemic Insult

  • Zhang, You-en;Wang, Jia-ning;Tang, Jun-ming;Guo, Ling-yun;Yang, Jian-ye;Huang, Yong-zhang;Tan, Yan;Fu, Shou-zhi;Kong, Xia;Zheng, Fei
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1-SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.

Fermented ginseng, GBCK25, ameliorates hemodynamic function on experimentally induced myocardial injury

  • Aravinthan, Adithan;Antonisamy, Paulrayer;Kim, Bumseok;Kim, Nam Soo;Shin, Dong Gyu;Seo, Jeong Hun;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.462-465
    • /
    • 2016
  • In the present study, we investigated whether treatment with GBCK25 facilitated the recovery of hemodynamic parameters, left ventricle systolic pressure, left ventricular developed pressure, and electrocardiographic changes. GBCK25 significantly prevented the decrease in hemodynamic parameters and ameliorated the electrocardiographic abnormality. These results indicate that GBCK25 has distinct cardioprotective effects in rat heart.