• Title/Summary/Keyword: rat brain regions.

Search Result 70, Processing Time 0.025 seconds

Therapeutic Benefits of Mesenchymal Stromal Cells in a Rat Model of Hemoglobin-Induced Hypertensive Intracerebral Hemorrhage

  • Ding, Rui;Lin, Chunnan;Wei, ShanShan;Zhang, Naichong;Tang, Liangang;Lin, Yumao;Chen, Zhijun;Xie, Teng;Chen, XiaoWei;Feng, Yu;Wu, LiHua
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.133-142
    • /
    • 2017
  • Previous studies have shown that bone marrow mesenchymal stromal cell (MSC) transplantation significantly improves the recovery of neurological function in a rat model of intracerebral hemorrhage. Potential repair mechanisms involve anti-inflammation, anti-apoptosis and angiogenesis. However, few studies have focused on the effects of MSCs on inducible nitric oxide synthase (iNOS) expression and subsequent peroxynitrite formation after hypertensive intracerebral hemorrhage (HICH). In this study, MSCs were transplanted intracerebrally into rats 6 hours after HICH. The modified neurological severity score and the modified limb placing test were used to measure behavioral outcomes. Blood-brain barrier disruption and neuronal loss were measured by zonula occludens-1 (ZO-1) and neuronal nucleus (NeuN) expression, respectively. Concomitant edema formation was evaluated by H&E staining and brain water content. The effect of MSCs treatment on neuroinflammation was analyzed by immunohistochemical analysis or polymerase chain reaction of CD68, Iba1, iNOS expression and subsequent peroxynitrite formation, and by an enzyme-linked immunosorbent assay of pro-inflammatory factors (IL-$1{\beta}$ and TNF-${\alpha}$). The MSCs-treated HICH group showed better performance on behavioral scores and lower brain water content compared to controls. Moreover, the MSC injection increased NeuN and ZO-1 expression measured by immunochemistry/immunofluorescence. Furthermore, MSCs reduced not only levels of CD68, Iba1 and pro-inflammatory factors, but it also inhibited iNOS expression and peroxynitrite formation in perihematomal regions. The results suggest that intracerebral administration of MSCs accelerates neurological function recovery in HICH rats. This may result from the ability of MSCs to suppress inflammation, at least in part, by inhibiting iNOS expression and subsequent peroxynitrite formation.

Immunohistochemical Studies of Human Ribosomal Protein S3 (rpS3)

  • Choi, Soo-Hyun;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Kim, Dae-Won;Won, Moo-Ho;Kang, Tae-Cheon;Park, Jin-Seu;Eum, Won-Sik;Kim, Joon;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.208-215
    • /
    • 2006
  • The human ribosomal protein S3 (rpS3) was expressed in E. coli using the pET-I5b vector and the monoclonal antibodies (mAbs) were produced and characterized. A total of five hybridoma cell lines were established and the antibodies recognized a single band of molecular weight of 33 kDa on immunoblot with purified rpS3. When the purified rpS3 was incubated with the mAbs, the UV endonuclease activity of rpS3 was inhibited up to a maximum of 49%. The binding affinity of mAbs to rpS3 determined by using a biosensor technology showed that they have similar binding affinities. Using the anti-rpS3 antibodies as probes, we investigated the cross-reactivities of various other mammalian brain tissues and cell lines, including human. The immunoreactive bands on Western blots appeared to be the same molecular mass of 33 kDa in all animal species tested. They also appear to be extensively cross-reactive among different organs in rat. These results demonstrated that only one type of immunologically similar rpS3 protein is present in all of the mammalian brain tissues including human. Furthermore, these antibodies were successfully applied in immunohistochemistry in order to detect rpS3 in the gerbil brain tissues. Among the various regions in the brain tissues, the rpS3 positive neurons were predominantly observed in the ependymal cells, hippocampus and substantia nigra pars compacta. The different distributions of rpS3 in brain tissues reply that rpS3 protein may play an important second function in the neuronal cells.

Odorant Receptors Containing Conserved Amino Acid Sequences in Transmembrane Domain 7 Display Distinct Expression Patterns in Mammalian Tissues

  • Ryu, Sang Eun;Shim, Tammy;Yi, Ju-Yeon;Kim, So Yeun;Park, Sun Hwa;Kim, Sung Won;Ronnett, Gabriele V.;Moon, Cheil
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.954-965
    • /
    • 2017
  • Mammalian genomes are well established, and highly conserved regions within odorant receptors that are unique from other G-protein coupled receptors have been identified. Numerous functional studies have focused on specific conserved amino acids motifs; however, not all conserved motifs have been sufficiently characterized. Here, we identified a highly conserved 18 amino acid sequence motif within transmembrane domain seven (CAS-TM7) which was identified by aligning odorant receptor sequences. Next, we investigated the expression pattern and distribution of this conserved amino acid motif among a broad range of odorant receptors. To examine the localization of odorant receptor proteins, we used a sequence-specific peptide antibody against CAS-TM7 which is specific to odorant receptors across species. The specificity of this peptide antibody in recognizing odorant receptors has been confirmed in a heterologous in vitro system and a rat-based in vivo system. The CAS-TM7 odorant receptors localized with distinct patterns at each region of the olfactory epithelium; septum, endoturbinate and ectoturbinate. To our great interests, we found that the CAS-TM7 odorant receptors are primarily localized to the dorsal region of the olfactory bulb, coinciding with olfactory epithelium-based patterns. Also, these odorant receptors were ectopically expressed in the various non-olfactory tissues in an evolutionary constrained manner between human and rats. This study has characterized the expression patterns of odorant receptors containing particular amino acid motif in transmembrane domain 7, and which led to an intriguing possibility that the conserved motif of odorant receptors can play critical roles in other physiological functions as well as olfaction.

Mannitol induces selective astroglial death in the CA1 region of the rat hippocampus following status epilepticus

  • Ko, Ah-Reum;Kang, Tae-Cheon
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.507-512
    • /
    • 2015
  • In the present study, we addressed the question of whether treatment with mannitol, an osmotic diuretic, affects astrogliovascular responses to status epilepticus (SE). In saline-treated animals, astrocytes exhibited reactive astrogliosis in the CA1-3 regions 2-4 days after SE. In the mannitol-treated animals, a large astroglial empty zone was observed in the CA1 region 2 days after SE. This astroglial loss was unrelated to vasogenic edema formation. There was no difference in SE-induced neuronal loss between saline- and mannitol-treated animals. Furthermore, mannitol treatment did not affect astroglial loss and vasogenic edema formation in the dentate gyrus and the piriform cortex. These findings suggest that mannitol treatment induces selective astroglial loss in the CA1 region independent of vasogenic edema formation following SE. These findings support the hypothesis that the susceptibility of astrocytes to SE is most likely due to the distinctive heterogeneity of astrocytes independent of hemodynamics. [BMB Reports 2015; 48(9): 507-512]

Experimental Study on the Expression of Striatal Dopamine Receptors in the Rat Model of Parkinsonism (파킨슨씨병 모델 흰쥐에서 줄무늬체 도파민 수용체의 발현에 대한 연구)

  • Oh, Chang-Wan;Han, Dae Hee;Chung, Chun Kee;Cho, Sa-Sun;Park, Kyeong-Han;Kim, Yong-Sik;Park, Chan-Woong
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.2
    • /
    • pp.155-166
    • /
    • 2000
  • This study was designed to investigate the underlying mechanisms for the temporal changes of the striatal dopamine D2 receptors in the rat model of parkinsonism. After injection of the 6-hydroxydopamine into the substantia nigra of adult rats, we measured the receptor binding capacity(Bmax), mRNA and protein of the D2 receptor at 2, 4 and 8 weeks. Following the lesion, mRNA and protein were elevated simultaneously on both sides of the striata. They showed more increase on the normal side at 2 and 4 weeks, and then they were almost equally abundant on both sides at 8 weeks. We also observed their increased production in the diffuse cortical and subcortical regions. The Bmax value also increased bilaterally in both striata, and was higher on the normal side at 2 weeks and then on the lesioned side at 4 and 8 weeks. These findings suggest that production of the striatal D2 receptor is regulated at the transcriptional level in this animal model. They also imply that this control may be mediated through a pathway which can have influence on the whole brain, rather than the local control of the dopamine content alone. The measured functional activity(Bmax) of the D2 receptor was not proportional to the amount of the receptor mRNA and proteins produced. This difference may be explained by the post-translational modification of the receptor proteins, which may be controlled by such factor as the local concentration of dopamine.

  • PDF

Co-expression of a novel ankyrin-containing protein, rSIAP, can modulate gating kinetics of large-conductance calcium-activated potassium channel from rat brain.

  • Lim, Hyun-Ho;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.45-45
    • /
    • 2003
  • We isolated a novel ankyrin-repeat containing protein, rSIAP (rSlo Interacting Ankyrin-repeat Protein), as an interacting protein to the cytosolic domain of the alpha-subunit of rat large-conductance Ca$\^$2+/-activated K$\^$+/ channel (rSlo) by yeast two-hybrid screening. Affinity pull-down assay showed the direct and specific interaction between rSIAP and rSlo domain. The channel-binding proteins can be classified into several categories according to their functional effects on the channel proteins, i.e. signaling adaptors, scaffolding net, molecular tuners, molecular chaperones, etc. To obtain initial clues on its functional roles, we investigated the cellular localization of rSIAP using immunofluorescent staining. The results showed the possible co-localization of rSlo and rSIAP protein near the plasma membrane, when co-expressed in CHO cells. We then investigated the functional effects of rSIAP on the rSlo channel using electrophysiological means. The co-expression of rSIAP accelerated the activation of rSlo channel. These effects were initiated at the micromolar [Ca$\^$2+/]$\_$i/ and gradually increased as [Ca$\^$2+/]$\_$i/ raised. Interestingly, rSIAP decreased the inactivation kinetics of rSlo channel at micromolar [Ca$\^$2+/]$\_$i/, while the rate was accelerated at sub-micromolar [Ca$\^$2+/]$\_$i/. These results suggest that rSIAP may modulate the activity of native BK$\_$Ca/ channel by altering its gating kinetics depending on [Ca$\^$2+/]$\_$i/. To localize critical regions involved in protein-protein interaction between rSlo and rSIAP, a series of sub-domain constructs were generated. We are currently investigating sub-domain interaction using both of yeast two-hybrid method and in vitro binding assay.

  • PDF

Molecular Cloning and Expression of cDNAs Encoding Mouse $Gal{\beta}$1,3(4)GlcNAc ${\alpha}$2,3-Sialyltransferase (mST3Gal III) and $Gal{\beta}$1,4(3)GlcNAc ${\alpha}$2,3-Sialyltransferase (mST3GaI IV)

  • Kim, Kyoung-Sook;Kim, Cheorl-Ho;Shin, Deug-Yong;Lee, Young-Choon
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.95-100
    • /
    • 1997
  • Two kinds of cDNA encoding mouse $Gal{\beta}$1,3(4)GlcNAc ${\alpha}$2,3-sialyltransferase (mST3Gal III) and $Gal{\beta}$1,4(3)GlcNAc ${\alpha}$2,3-sialyltransferase (mST3Gal IV) were isolated from mouse brain cDNA library by means of a PCR-based approach. The cDNA sequences included an open reading frame coding for proteins of 374 and 333 amino acids, respectively, and the primary structure of these enzymes suggested a putative domain structure consisting of four regions, like that in other glycosyltransferases. The deduced amino acid sequences of mST3GaI III and IV showed a 98% and 89% identity with rat ST3GaI III and human ST3Gal IV, respectively. Northern analysis indicated that the expression of mST3Gal III mRNA was abundant in heart, liver and adult brain, while that of mST3GaI IV mRNA was detected in all tissues tested except for testis, but the level was the highest in liver. Soluble forms of mST3GaI III and IV transiently expressed in COS cells exhibited enzyme activity toward acceptor substrates containing the terminal either $Gal{\beta}$1,3GlcNAc or $Gal{\beta}$1,4GlcNAc sequences. The substrate preferences of both enzymes were stronger for tetrasaccharides than for disaccharides.

  • PDF

The Effect of Joongwan(中脘;CV12) Acupuncture on NADPH-diaphorase in the SD-rats Brain with Indomethacin-Induced Gastrointestinal Diease (중완(中脘) 자침(刺鍼)이 indomethacin 유발 소화기 질환 SD-rat 뇌(腦)의 NADPH-diaphorase 신경세포에 미치는 영향)

  • Park, Hee-Soo
    • Journal of Pharmacopuncture
    • /
    • v.6 no.2
    • /
    • pp.57-65
    • /
    • 2003
  • Objective : This study was carried out to systemically investigate the effect of Joongwan(中脘; CV12) acupuncture in cerebrum and cerebellum of indomethacin-induced gastrointestinal disease in SD-rats. Method : 1. We induced gastrointestinal disease by indomethacin oral administration in SD-rats. 2. We selected Joongwan(中脘; CV12) acupuncture point that generally have been used to treat gastrointestinal disease. 3. We categorized SD-rats into three groups as followings. (1) Normal group : The group without any management (2) Control group : The group with indomethacin-induced gastrointestinal disease (3) Treated group : The group that Joongwan(中脘; CV12) acupuncture was performed after inducing gastrointestinal disease 4. We figured out the effect of acupuncture by analyzing staining degree of NADPH-diaphorase in cerebrum and cerebellum. Results : 1. Cerebrum (1) Normal group : The degree of staining was very low. (2) Control group : NADPH-diaphorase was mainly stained in cerebral cortex and the stained region was wider than Normal group. (3) Treated group : The degree and region of staining was higher and wider than the other goups. Sometimes the intensively stained regions were observed. 2. Cerebellum In both cases of Control group and Treated group, the regions in cortex were stained mainly. But, between Control group and Treated group, there was no remarkable difference. Conclusion : In case of cerebellum, there was no remarkable result. On the other hand, in case of cerebrum, there were certain differences among three groups. Through those results, we could conclude that Joongwan(中脘; CV12) acupuncture treatment was able to affect NADPH-diaphorase expression in the cerebrum of SD-rats that have gastrointestinal disease with indomethacin-inducing.

Immunocytochemical distribution of raf protein kinases and protein pattern in rat cerebellum (쥐 소뇌에 있어서 raf protein kinases 의 면역세포 화학적 분포와 단백질 양상)

  • 박정순;최원철
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.14-26
    • /
    • 1998
  • a- and c-raf protein kinase in the brain of rat, the protein pattern of cerebellum during postnatal development of rat by polyacryamide gel electrophoresis, and the existence of c-raf protein kinase by using Western blotting method. The results were as follows: The cytoplasm of Purkinje cells was, in general, strongly labeled with the antibodies of a- and c-raf protein kinases in the cortex regions such as Pyramis cerebelli, Unula, Nodulus, Paraflocculus, and Flocculus. C-raf protein kinase appeared stronger immunoreactivity than a-raf protein kinase. In peripheral of cytoplasm of Nucleus emboliformis, A-raf Protein kinase was labeled markedly. During postnatal development, the protein of 38,000 dalton increased gradually in the cytosolic fraction of cerebellum, and the protein of 260,600 dalton appeared in the membrane fraction of cerebellum. By immunoblotting method, the protein band of 74,000 dalton was detected in crude and cytosolic fractions, but it was not exhibited in membrane fraction, In this fact, it was identified that a - and c-raf proteins were distributed throughout neuronal cells, especially in the Purkinje cells, in normal cerebellum cortex of rat. Also, this phenomenon was assumed that raf protein kinase in cytoplasm of neuronal cell had to do with a certain functional mechanism and signal transduction of neurotransmitter as Protein kinase C.

  • PDF

Epigenetic Responses Programmed by Prenatal Stress : $F_1$ Male Rat Model (출생 전 스트레스에 의해 프로그램된 후생학적 반응 : $F_1$ 수컷 흰쥐 모델)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • The efficient strategies to cope with unpredictable and/or harmful environmental changes have been developed by every organism in order to ensure its survival and continuity of it's own species. As a results, all living things on earth maintain dynamically internal stability via a process termed 'homeostasis' among physiological parameters despite of external environment changes. Stress is an emotional and physical response to threat homeostasis. Stress may have not only transient but rather permanent effect on the organism; recent evidence clearly show that prenatal stress could organize or imprint permanently physiological systems without any change in genetic codes, a process known as 'epigenetic programming'. In this review, a series of reproduction-associated events occurred in prenatally stressed male rats such as alteration in the structure of sexually dimorphic brain regions, modification of neurotransmitter metabolism, changes in reproductive endocrine status, and finally, disorders of sexual behavior will be introduced. The fetal brain is highly sensitive to prenatal programming and glucocorticoids in particular have powerful brain-programming properties. The chronic hyperactivation of fetal brain by maternal stress-induced glucocorticoid input will provide new program via increasing the neuroplasticities. This 'increased neuroplasticities' will be the basis for the 'increased phenotypic plasticities' rendering the organism's better adaptation to environmental challenges. In conclusion, organism who experienced 'harsh' environment in his fetal life seems to give up a certain portion of reproductive competence to make good chance of survival in his future life by epigenetic (re)programming.

  • PDF