• 제목/요약/키워드: rare-earth metal oxide

검색결과 31건 처리시간 0.028초

Effect of Oxidation Behavior of (Nd,Dy)-Fe-B Magnet on Heavy Rare Earth Extraction Process

  • 박상민;남선우;이상훈;송명석;김택수
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.91-96
    • /
    • 2021
  • Rare earth magnets with excellent magnetic properties are indispensable in the electric device, wind turbine, and e-mobility industries. The demand for the development of eco-friendly recycling techniques has increased to realize sustainable green technology, and the supply of rare earth resources, which are critical for the production of permanent magnets, are limited. Liquid metal extraction (LME), which is a type of pyrometallurgical recycling, is known to selectively extract the metal forms of rare earth elements. Although several studies have been carried out on the formation of intermetallic compounds and oxides, the effect of oxide formation on the extraction efficiency in the LME process remains unknown. In this study, microstructural and phase analyses are conducted to confirm the oxidation behavior of magnets pulverized by a jaw crusher. The LME process is performed with pulverized scrap, and extraction percentages are calculated to confirm the effect of the oxide phases on the extraction of Dy during the reaction. During the L ME process, Nd is completely extracted after 6 h, while Dy remains as Dy2Fe17 and Dy-oxide. Because the decomposition rate of Dy2Fe17 is faster than the reduction rate of Dy-oxide, the importance of controlling Dy-oxide on Dy extraction is confirmed.

폐니켈수소전지로부터 회수된 희토류 침전물의 희토류 산화물 분말 제조에 대한 연구 (A Study on the Preparation of Rare Earth Oxide Powder for Rare Earth Precipitates Recovered from Spent Ni-MH Batteries)

  • 김대원;안낙균;심현우;박경수;최희락
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.213-219
    • /
    • 2018
  • We report a method for preparing rare earth oxides ($Re_xO_y$) from the recycling process for spent Ni-metal hydride (Ni-MH) batteries. This process first involves a leaching of spent Ni-MH powders with sulfuric acid at $90^{\circ}C$, resulting in rare earth precipitates (i.e., $NaRE(SO_4)_2{\cdot}H_2O$, RE = La, Ce, Nd), which are converted into rare earth oxides via two different approaches: i) simple heat treatment in air, and ii) metathesis reaction with NaOH at $70^{\circ}C$. Not only the morphological features but also the crystallographic structures of all products are systematically investigated using field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD); their thermal behaviors are also analyzed. In particular, XRD results show that some of the rare earth precipitates are converted into oxide form (such as $La_2O_3$, $Ce_2O_3$, and $Nd_2O_3$) with heat treatment at $1200^{\circ}C$; however, secondary peaks are also observed. On the other hand, rare earth oxides, RExOy can be successfully obtained after metathesis of rare earth precipitates, followed by heat treatment at $1000^{\circ}C$ in air, along with a change of crystallographic structures, i.e., $NaRE(SO_4)_2{\cdot}H_2O{\rightarrow}RE(OH)_3{\rightarrow}RE_xO_y$.

폐니켈수소전지로부터 희토류 산화물 분말의 회수에 대한 연구 (A study on recovery of rare earth oxide powders from waste NiMH batteries)

  • 안낙균;김대원;심현우;박재훈;박정진
    • 한국결정성장학회지
    • /
    • 제28권2호
    • /
    • pp.85-90
    • /
    • 2018
  • 폐니켈수소전지에 함유되어 있는 희토류를 회수하기 위하여 $H_2SO_4$로 침출한 용액에 10 M NaOH를 첨가하여 희토류를 pH 2.0 이하에서 약 98 % 침전시켰다. 이후 회수된 희토류 복합 침전물은 $800^{\circ}C$에서 4시간 동안 열처리를 통해 $HNO_3$에 대한 침출률을 증가시켰으며, 희토류 복합 침전물이 용해된 용액에 oxalic acid를 첨가하여 2차 침전을 실시하였다. 재침전된 희토류는 다시 $800^{\circ}C$에서 4시간 열처리를 통해 산화물 형태로 변환되었으며, 이때 희토류 산화물의 순도는 약 99.5 %를 나타내었다.

산화물 반도체 가스 센서의 습도 의존성 제거 기술 (Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors)

  • 박지호;윤지욱
    • 한국전기전자재료학회논문지
    • /
    • 제37권4호
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Multiform Oxide Optical Materials via the Versatile Pechini-type Sol-Gel Process

  • Lin, J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1247-1250
    • /
    • 2008
  • This presentation highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process which uses the common metal salts (nitrates, acetates, chlorides etc) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as cross-linking agent to form a polymeric resin on molecular level, allowing the preparation of many forms of luminescent materials.

  • PDF

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

Synthesis and Characterization of Novel Rare-earth Oxides Precursors

  • Lee, Euy Jin;Park, Bo Keun;Chung, Taek-Mo;Kim, Chang Gyoun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.366.1-366.1
    • /
    • 2014
  • The rare-earth oxides M2O3 (M=La, Pr, Gd) are good insulators due to their large band gap (3.9eV for Pr2O3, 5.6eV for Gd2O3), they have high dielectric constants (Gd2O3 K=16, La2O3 K=27, Pr2O3 K=26-30) and, compared to ZrO2 and HfO2, they have higher thermodynamic stability on silicon making them very attractive materials for high-K dielectric applications. Another attractive feature of some rare-earth oxides is their relatively close lattice match to that of silicon, offering the possibility of epitaxial growth and eliminating problems related to grain boundaries in polycrystalline films. Metal-organic chemical vapor deposition (MOCVD) has been preferred to PVD methods because of the possibility of large area deposition, good composition control and excellent conformal step coverage. Herein we report on the synthesis of rare-earth oxide complexes with designed alkoxide and aminoalkoxide ligand. These novel complexes have been characterized by means of FT-IR, elemental analysis, and thermogravimetric analysis (TGA).

  • PDF

열차폐용 희토류 산화물의 상형성과 열물성 (Phase Evolution and Thermo-physical Properties of Rare-earth Oxides for Thermal Barrier Systems)

  • 심병철;곽길호;이성민;오윤석;김형태;장병국;김성원
    • 한국분말재료학회지
    • /
    • 제17권2호
    • /
    • pp.148-153
    • /
    • 2010
  • Thermal barrier systems have been widely investigated over the past decades, in order to enhance reliability and efficiency of gas turbines at higher temperatures. Yttria-stabilized zirconia (YSZ) is one of the most leading materials as the thermal barriers due to its low thermal conductivity, thermodynamic stability, and thermal compatibility with metal substrates. In this work, rare-earth oxides with pyrochlore phases for thermal barrier systems were investigated. Pyrochlore phases were successfully formed via solid-state reactions started from rare-earth oxide powders. For the heat-treated samples, thermo-physical properties were examined. These rare-oxide oxides showed thermal expansion of $9{\sim}12{\times}10^{-6}/K$ and thermal conductivity of 1.2~2.4 W/mK, which is comparable with the thermal properties of YSZ.

Application of Neodymium Oxide into Transparent Dielectric Materials for PDP

  • Jung, Byung-Hae;Kim, Hyung-Sun;Lee, Ki-Sung;Sohn, Sang-Ho;Kwon, Tae-In;Lee, Sung-Wook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.799-802
    • /
    • 2002
  • For purer images in plasma display panel, a new dielectric compositions containing neodymium oxide were studied. In the present study, Pb-based compositions were used as mother glasses (PbO-$B_2O_3-SiO_2Nd_2O_3$) and thermal, dielectric, and optical properties were measured. As a result the new dielectric with a rare-earth oxide made selectively visible light penetrated and showed especially noticeable absorption properties at 585 nm that is surely related to the erroneous gas from Ne discharge. Thus, this light purple colored glass composition will help PDP to come true to get better imaging process.

  • PDF