DOI QR코드

DOI QR Code

Phase Evolution and Thermo-physical Properties of Rare-earth Oxides for Thermal Barrier Systems

열차폐용 희토류 산화물의 상형성과 열물성

  • Shim, Byung-Chul (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwak, Kil-Ho (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jang, Byung-Koog (Nano Ceramics Center, National Institute of Materials Science) ;
  • Kim, Seong-Won (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 심병철 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 곽길호 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 장병국 (물질.재료 연구기구, 나노세라믹센터) ;
  • 김성원 (한국세라믹기술원 엔지니어링세라믹센터)
  • Published : 2010.04.28

Abstract

Thermal barrier systems have been widely investigated over the past decades, in order to enhance reliability and efficiency of gas turbines at higher temperatures. Yttria-stabilized zirconia (YSZ) is one of the most leading materials as the thermal barriers due to its low thermal conductivity, thermodynamic stability, and thermal compatibility with metal substrates. In this work, rare-earth oxides with pyrochlore phases for thermal barrier systems were investigated. Pyrochlore phases were successfully formed via solid-state reactions started from rare-earth oxide powders. For the heat-treated samples, thermo-physical properties were examined. These rare-oxide oxides showed thermal expansion of $9{\sim}12{\times}10^{-6}/K$ and thermal conductivity of 1.2~2.4 W/mK, which is comparable with the thermal properties of YSZ.

Keywords

References

  1. D. R. Clarke and C. G. Levi: Annu. Rev. Mater. Res., 33 (2003) 383. https://doi.org/10.1146/annurev.matsci.33.011403.113718
  2. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan- Brings, O. Lavigne, J.-M. Dorvaux, M. Poulain, R. Mévrel and M Caliez: Aero. Sci. & Technol., 7 (2003) 73. https://doi.org/10.1016/S1270-9638(02)00003-2
  3. D. R. Clarke and S. R. Phillpot: Mater. Today, 8 (2005) 25.
  4. R. Vassen, A. Stuke and D. Stöver: J. Therm. Spray Technol., 18 (2008) 181.
  5. C. G. Levi: Curr. Opin. in Solid State Mater. Sci., 8 (2004) 77. https://doi.org/10.1016/j.cossms.2004.03.009
  6. D. R. Clarke: Surf. Coat. Technol., 163-164 (2003) 67. https://doi.org/10.1016/S0257-8972(02)00593-5
  7. R. Vaßen, H. Kassner, A. Stuke, F. Hauler and D. Hathiramani, D. Stover: Surf. Coat. Technol., 202 (2008) 4432. https://doi.org/10.1016/j.surfcoat.2008.04.022
  8. U. Schulz, H.-J. Rätzer-Scheibe, B. Saruhan and A. F. Renteria: Mat.-wiss. u. Werkstofftech., 38 (2007) 659. https://doi.org/10.1002/mawe.200700189
  9. B.-K. Jang: Surf. Coat. Technol., 202 (2008) 1568. https://doi.org/10.1016/j.surfcoat.2007.07.017
  10. X. Q. Cao, R. Vassen and D. Stoever: J. Euro. Ceram. Soc., 24 (2004) 1. https://doi.org/10.1016/S0955-2219(03)00129-8
  11. M. R. Winter and D. R. Clarke: J. Am. Ceram. Soc., 90 (2007) 553. https://doi.org/10.1111/j.1551-2916.2006.01448.x
  12. X. Cao, R. Vassen, W. Fischer, F. Tietz, W. Jungen and D. Stöver: Adv. Mater., 15 (2003) 1438. https://doi.org/10.1002/adma.200304132
  13. X. Qiang, P. Wei, W. Jingdong, Q. Longhao, M. Hezhuo, K. Mori and T. Torigoe: Mater. Lett., 59 (2005) 2804. https://doi.org/10.1016/j.matlet.2005.03.061
  14. Z. Xu, L. He, X. Xhong, J. Zhang, X. Chen, H. Ma and X. Cao: J. Alloys Compd., 480 (2009) 220. https://doi.org/10.1016/j.jallcom.2009.02.048
  15. Z.-G. Liu, J.-H. Ouyang, Y. Zhou and J. Li: J. of Alloys Compd., 468 (2009) 350. https://doi.org/10.1016/j.jallcom.2008.01.026
  16. C. Wan, T. D. Sparks, P. Wei and D. R. Clarke: J. Am. Ceram. Soc., 93 (2010) in press.
  17. A. Chartier, C. Meis and J.-P. Crocombette: Phys. Rev. B, 67 (2003) 174102. https://doi.org/10.1103/PhysRevB.67.174102
  18. Y. H. Lee, H. S. Sheu, J. P. Deng and H.-C. I. Kao: J. Alloys Compd., 487 (2009) 595. https://doi.org/10.1016/j.jallcom.2009.08.021
  19. R. Terki, H Feraoun, G. Bertrand and H. Aourag: J. Appl. Phys., 96 (2004) 6482. https://doi.org/10.1063/1.1789272
  20. A. N. Radhakrishnan, P. P. Rao, K. S. Sibi, M. Deepa and P. Koshy: J. Solid State Chem., 182 (2009) 2312. https://doi.org/10.1016/j.jssc.2009.06.016
  21. P. K. Schelling, S. R. Phillpot and R. W. Grimes: Philos. Mag. Lett., 84 (2004) 127. https://doi.org/10.1080/09500830310001646699
  22. J. Wu, N. P. Paolture, P. G. Klemens, M. Gells, E. Garcia, P. Miranzo and M. I. Osendi: J. Mater. Res., 17 (2002) 3193. https://doi.org/10.1557/JMR.2002.0462

Cited by

  1. Oxides for Thermal Barrier Coatings vol.18, pp.6, 2011, https://doi.org/10.4150/KPMI.2011.18.6.568