• Title/Summary/Keyword: rare element

Search Result 257, Processing Time 0.026 seconds

Corrosion Behavior of Rapidly Solidified Mg-Zn-Y Alloys in NaCl Solution

  • Izumi, Shogo;Yamasaki, Michiaki;Sekigawa, Takahiro;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1043-1044
    • /
    • 2006
  • Compositional dependence of corrosion behavior of rapidly solidified Mg-rich Mg-Zn-Y alloys in NaCl aqueous solution has been investigated. Mg-Zn-Y ternary alloys containing small amounts of Zn exhibited low corrosion rate, although the $Mg_{98}Y_2$ (at. %) binary alloy showed severe corrosion with violet evolution of hydrogen. The alloy with highest corrosion-resistance was $Mg_{97.25}Zn_{0.75_Y_2$, its corrosion rate was about 1 mm year-1 in 0.17 M (1.0 wt. %) NaCl solution. $Mg_{97.25}Zn_{0.75}Y_2$ alloy exhibited passive region in anodic polarization curves when immersed in NaCl solution. Rapidly solidification and small amount of Zn addition may bring about an increase in electrochemical homogeneity of Mg-Zn-Y alloys, resulting in enhancement of corrosion resistance.

  • PDF

Analysis of the Magnetic Properties of RFe11Ti and RFe11TiH (R=Tb,Ho)

  • Xu, S.W.;Yan, Y.;Jin, H.M.;Wang, X.F.;Wang, W.Q.;Su, F.
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.153-156
    • /
    • 2003
  • The values of crystalline-electric-field parameters $A_{nm}$ for $RFe_{11}$Ti $H_{x}$ (R=Tb,Ho) (x=0,l) are obtained by fitting calculations to the magnetization curves along the crystal axes at 4.2 K and higher temperatures. The insertion of H element in RFe$_{11}$Ti significantly affects CEF parameters $A_{nm}$ . By using exchange field 2${\mu}$$_{B}$ $H_{ex}$ derived by inelastic neutron scattering and fitted $A_{nm}$ , the calculations reproduce the experimental curves well.

Design and Fabrication of 2-T Rotating Halbach Magnet for Magnetic Refrigerator

  • Ryu, Kwon Sang;Nahm, Seung Hoon;Jung, Jae Kap;Baek, Seung-Wook
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.65-68
    • /
    • 2017
  • This paper reports simulation and evaluation of the magnetic flux density (MFD) of a rotating Halbach magnet (RHM) composed of a rotating inner Halbach cylinder (HC) and a fixed outer HC. We first chose the dimension of a single HC, then determined the dimensions of an inner and outer HC to get MFD = 2 T. Simulation results were used to guide fabrication of an RHM; its magnetic field in the central axis direction agreed well with simulated values.

The Study on Reducing Cogging Torque of Propulsion Motor for Electric Ship (함정용 추진전동기 코깅 토크 저감에 관한 연구)

  • Bin, Jae-Goo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.18-23
    • /
    • 2005
  • Ships have been propelled and maneuvered by electrical drives since trle late seventies. Recently, rare earth PMs allow the design of brushless motors with very high efficiency over a wide speed range. This is the most important factor in ship propulsion technology. Several types PM motors have been developing for ship propulsion system. However these have disadvantage such as cogging torque. It causes an undesired effect that contributes to output ripple, vibration, and noise of machine. Therefore several techniques may be adopted in designing PM motor in order to reduce the cogging torque. This paper describes cogging torque receding methods such as adjusting arigap length, magnet arc, and magnet thickness. That are analysed by using the finite element method(FEM) and the maxwell stress tensor method.

REE variation of Ultramafic rocks related to the Serpentinization, the Gyeonggi Massifs in the western Korea

  • Seo, Ji-Eun;Park, Seon-Gyu;Oh, Chang-Whan;Song, Suck-Hwan
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.194-195
    • /
    • 2003
  • High-pressure amphibolite-facies rocks with serpentinized ultramafic rocks occur in the Gyeonggi Massif. Ultramafic rocks occur as lenses within Precambrian granite gneiss, which showing dominantly tectonic lines of NNE directions as well as east extensional area of the chinese collision belt between south and north China block(\ulcorner). This study regionally makes a comparative study of ultramafic rocks in the western part of the Gyeonggi Massif in Korea. (omitted)

  • PDF

Seismic reliability of concrete rectangular liquid-storage structures

  • Cheng, Xuansheng;He, Peicun;Yu, Dongjiang
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.563-570
    • /
    • 2019
  • To analyze the seismic reliability of concrete rectangular liquid storage structures (CRLSSs), assuming that the wall thickness and internal liquid depth of CRLSSs are random variables, calculation models of CRLSSs are established by using the Monte Carlo finite element method (FEM). The principal stresses of the over-ground and buried CRLSSs are calculated under three rare fortification intensities, and the failure probabilities of CRLSSs are obtained. The results show that the seismic reliability increases with the increase of wall thickness, whereas it decreases with the increase of liquid depth. Between the two random factors, the seismic reliability of CRLSSs is more sensitive to the change in wall thickness. Compared with the over-ground CRLSS, the buried CRLSS has better reliability.

Current Status of Titanium Smelting Technology for Powder Metallurgy (분말야금을 위한 타이타늄 제련기술 현황)

  • Sohn, Ho-Sang
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • Titanium is the ninth most abundant element in the Earth's crust and is the fourth most abundant structural metal after aluminum, iron, and magnesium. It exhibits a higher specific strength than steel along with an excellent corrosion resistance, highlighting the promising potential of titanium as a structural metal. However, titanium is difficult to extract from its ore and is classified as a rare metal, despite its abundance. Therefore, the production of titanium is exceedingly low compared to that of common metals. Titanium is conventionally produced as a sponge by the Kroll process. For powder metallurgy (PM), hydrogenation-dehydrogenation (HDH) of the titanium sponge or gas atomization of the titanium bulk is required. Therefore, numerous studies have been conducted on smelting, which replaces the Kroll process and produces powder that can be used directly for PM. In this review, the Kroll process and new smelting technologies of titanium for PM, such as metallothermic, electrolytic, and hydrogen reduction of TiCl4 and TiO2 are discussed.

Rare earth removal from pyroprocessing fuel product for preparing MSR fuel

  • Dalsung Yoon;Seungwoo Paek;Chang Hwa Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1013-1021
    • /
    • 2024
  • A series of experiments were performed to produce a fuel source for a molten salt reactor (MSR) through pyroprocessing technology. A simulated LiCl-KCl-UCl3-NdCl3 salt system was prepared, and the U element was fully recovered using a liquid cadmium cathode (LCC) by applying a constant current. As a result, the salt was purified with an UCl3 concentration lower than 100 ppm. Subsequently, the U/RE ingot was prepared by melting U and RE metals in Y2O3 crucible at 1473 K as a surrogate for RE-rich ingot product from pyroprocessing. The produced ingot was sliced and used as a working electrode in LiCl-KCl-LaCl3 salt. Only RE elements were then anodically dissolved by applying potential at - 1.7 V versus Ag/AgCl reference electrode. The RE-removed ingot product was used to produce UCl3 via the reaction with NH4Cl in a sealed reactor.

Seismic fragility analysis of corroded RC pier strengthened by engineered cementitious composites

  • Yan Liang;Jing-Xiao Shu;Cheng-Xin Zhao;Xi Dong Wang;Guang Yu Yang
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.269-283
    • /
    • 2024
  • When a reinforced concrete (RC) structure is exposed to a corrosive environment for an extended period of time, the material qualities deteriorate, resulting in a loss in seismic performance. Engineered Cementitious Composites (ECC) have been used to reinforce the corroded RC structure, which can achieve reinforcement effectiveness for a small change in cross-section size. In this work, finite element models of unjacketed RC pier and ECC jacketed pier were established and verified by experimental tests, with the buckling effect of longitudinal reinforcement considered. Compared with the unjacketed pier, the displacement of the pier top of the ECC jacketed pier was reduced by about 9.52% under earthquake action. In the case of moderate and major earthquakes, the probability of exceedance of ECC jacketed pier is significantly reduced. For the case of rare earthquake loading, with the ECC jacket, the e of the pier experiencing serious damage and complete damage states is reduced by 10.29% and 29.78%, respectively.

FINITE ELEMENT ANALYSIS OF THE INFLUENCE OF ESTHETIC POSTS ON INCISORS (심미 포스트가 전치에 미치는 응력과 변위에 관한 삼차원 유한요소법적 분석)

  • Kwon Tae-Hoon;Hwang Jung-Won;Kim Sung-Hun;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.582-595
    • /
    • 2003
  • Statement of problem : Most posts are metallic, but in response to the need for a post that possesses optical properties compatible with an all-ceramic crown. an esthetic post has been developed. Although there have been many studies about the esthetic post materials, 3-dimensional finite element studies about the stress distribution of them are in rare. Purpose : The purpose of this study is to investigate comparatively the distribution of stresses of the restored, endodontically treated maxillary incisors with the esthetic post materials and the displacement on the cement layer on simulated occlusal loading by using a 3-dimensional finite element analysis model. Material and method : Four 3-dimensional finite element models were constructed in a view of a maxillary central incisor, a post, a core, and the supporting tissues to investigate the stresses in various esthetic posts and cores and the displacement on the cement layer (Model 1 ; Cast gold post and core, Model 2 ; Glass fiber post with composite core, Model 3 ; Zirconia post with composite core. Model 4 ; Zirconia post with ceramic core). Force of 300N was applied to the incisal edge and the cingulum (centric stop point) with the angle of 135-degree to the long axis of the tooth. Results : 1. The stresses and displacement on the incisal edge were higher than on the cingulum 2. The stresses in dentin were the highest in Model 2 (Glass fiber post with composite core), and the second was Model 3, the third Model 1, and the lowest Model 4. 3. The stresses in post and core were the highest in Model 4 (Zirconia post with ceramic core), and the second was Model 1, the third Model 3, and the lowest Model 2. 4. The displacement on the cement layer was the highest in Model 2 (Glass fiber post with composite core), and the second was Model 3, the third Model 1, and the lowest Model 4. Conclusion : When a functional maximum bite force was applied, the distribution of stresses or the esthetic post and core materials and the displacement on the cement layer were a little different. It seems that restoring extensively damaged incisors with esthetic post and core materials would be decided according to the remaining tooth structure.