Analysis of the Magnetic Properties of RFe₁₁Ti and RFe₁₁TiH (R=Tb,Ho) S. W. Xu¹, Y. Yan^{1,2*}, H. M. Jin¹, X. F. Wang¹, W. Q. Wang¹, and F. Su¹ ¹Department of Physics, Jilin University, Changchun 130023, P.R. China ²State Key Laboratory for Superhard Materials, Jilin University, Changchun 130023, P.R. China (Received 8 December 2003) The values of crystalline-electric-field parameters A_{nm} for RFe₁₁TiH_x (R=Tb,Ho) (x=0,1) are obtained by fitting calculations to the magnetization curves along the crystal axes at 4.2 K and higher temperatures. The insertion of H element in RFe₁₁Ti significantly affects CEF parameters A_{nm} . By using exchange field $2\mu_B H_{ex}$ derived by inelastic neutron scattering and fitted A_{nm} , the calculations reproduce the experimental curves well. Key words: crystalline-electric-field, rare-earth 3d metal compound, magnetization curve #### 1. Introduction During the last few years, the magnetic properties of the intermetallic compounds RFe₁₁Ti and their hydrides RFe₁₁TiH have been studied extensively [1-8]. Many experimental investigations of the intrinsic magnetic properties of RFe₁₁TiH_x (x=0,1) single crystals have been reported [1-7]. The insertion of hydrogen element in RFe₁₁Ti significantly changes their Curie temperature, saturation magnetization and magnetic anisotropy. Nikitin et al evaluated the values of Ho-Fe exchange field $2\mu_B H_{ex}$ and crystalline-electric-field (CEF) parameters A_{nm} in $HoFe_{11}TiH_x(x=0,1)$ by fitting calculations to the magnetization curves along the crystal axes at 4.2 K and concluded that hydrogenation leads to the increase in $2\mu_B H_{ex}$ of about 10% [1]. Inelastic neutron scattering (INS) experiments on RFe₁₁Ti and RFe₁₁TiN (R=Gd,Er) show that insertion of N element leads to the decrease in $2\mu_B H_{ex}$ of about 14% [9]. INS experiments on Gd₂Fe₁₇ and Gd₂Fe₁₇M_x (M: C, N, D (deuterium)) also show that insertion of light interstitial element (C, N, D) reduces the Gd-Fe exchange field at Gd site in Gd₂Fe₁₇ [10]. In this connection, the insertion of light interstitial elements leads to the enhancement of Curie temperature and the lattice expansion of the compounds. This work is to evaluate the values of CEF parameters A_{nm} of RFe₁₁TiH_x (R=Tb,Ho) (x=0,1) from the experimental magnetization curves at 4.2 K and higher temperatures on experimental data. the basis of the single-ion model and analyse the # 2. Method of Analysis $RFe_{11}TiH_x$ (x=0,1) have a $ThMn_{12}$ -type tetragonal structure with space group I4/mmm. There is one rare-earth ion site with the point symmetry D_{4h} . The Hamiltonian of the rare-earth ion consists of the CEF interaction, the R-Fe exchange interaction and the Zeeman energy, i.e. $$H=H_{CEF}+2\mu_{B}\vec{S} \bullet \vec{H}_{ex}+\mu_{B}(\vec{L}+2\vec{S}) \bullet \vec{H}, \qquad (1)$$ In the coordinate system with x and z axes along the [100] and [001] axes, respectively, the CEF interaction can be expressed as $$H_{CEF} = \sum_{n=2,4,6} A_{n0} \sum_{j} C_{n0}(\theta_{j}, \varphi_{j}) + \sum_{n=4,6} A_{n4} \sum_{j} (C_{n4}(\theta_{j}, \varphi_{j}) + C_{n-4}(\theta_{j}, \varphi_{j})), \qquad (2)$$ Here $$C_{nm}(\theta_j, \varphi_j) = [4\pi/(2n+1)]^{1/2} Y_{nm}(\theta_j, \varphi_j),$$ (3) $Y_{nm}(\theta_j, \varphi_j)$ are the spherical harmonics, θ_j and φ_j are the polar and azimuthal angles of the position vector of jth 4f electron. It is assumed that the rare-earth ion is trivalent and \vec{H}_{ex} is proportional to the magnetic moment of the Fe sublattice \vec{M}_{Fe} . The matrix elements of Eq. (1) ^{*}Corresponding author: Tel: +86-0431-8499047, e-mail: jhm@mail.jlu.edu.cn are calculated by using the irreducible-tensor-operator technique. For a given applied field \vec{H} and a direction of \vec{H}_{ex} , the eigenvalues E_i and eigenfunctions $|n_i\rangle$ $(i=1, 2, \cdots, 2J+1)$ are obtained by diagonalizing the $(2J+1)\times (2J+1)$ matrix. The free energy for RFe₁₁TiH_x (x=0,1) is given by $$F(\vec{H}, \vec{M}_{Fe}, T) = -kT \ln Z + K_1(T) Sin^2 \theta_{Fe} - \vec{M}_{Fe}(T) \cdot \vec{H},$$ (4) Where $$Z = \sum_{i} \exp(-E_i/kT), \qquad (5)$$ and $K_1(T)$ is the magnetocrystalline anisotropy constant of the Fe sublattice. $M_{\rm Fe}(T/T_C)/M_{\rm Fe}(0)$ and $K_1(T/T_C)/K_1(0)$ for RFe₁₁Ti and RFe₁₁TiH are taken to be same as those for LuFe₁₁Ti and LuFe₁₁TiH, respectively [4]. The value of $M_{\rm Fe}(0)$ is taken to be 20.1 $\mu_B/f.u.$ for RFe₁₁Ti and 20.6 $\mu_B/f.u.$ for RFe₁₁TiH, respectively. $K_1(0)$ =23.6 K/f.u. for RFe₁₁Ti and $K_1(0)$ =26.6 K/f.u. for RFe₁₁TiH is same as that for LuFe₁₁Ti and LuFe₁₁TiH, respectively [4]. The equilibrium direction of \overrightarrow{M}_{Fe} is determined from minimization of $F(\overrightarrow{H}, \overrightarrow{M}_{Fe}, T)$, and the magnetic moments of the rare-earth ion and of RFe₁₁TiH_x (x=0,1) are given by $$\vec{M}_R = -\mu_B \sum_i \langle n_i | \vec{L} + 2\vec{S} | n_i \rangle \exp(-E_i/kT)/Z, \qquad (6)$$ $$\vec{M} = \vec{M}_R + \vec{M}_{Fe} \,. \tag{7}$$ The value of the exchange field $2\mu_B H_{ex}$ in RFe₁₁TiH_x (R=Tb,Ho) (x=0,1) were estimated as follows. The value of $2\mu_B H_{ex}(T \approx 20 \text{ K})$ derived by INS experiment is about 470 K, 343 K and 250 K for SmFe₁₁Ti [11], GdFe₁₁Ti [9] and ErFe₁₁Ti [9]. It is known that the value of $2\mu_B H_{ex}$ decrease monotonically across the rare-earth series from Pr to Er in many Rare-earth-Fe intermetallic compounds [12, 13]. By extrapolating the value for SmFe₁₁Ti, GdFe₁₁Ti and ErFe₁₁Ti according such a variation in $2\mu_B H_{ex}$ across the RFe₁₁Ti series, the value of $2\mu_B H_{ex}(T \approx 20 \text{ K})$ for TbFe₁₁Ti and HoFe₁₁Ti is estimated to be about 285 K and 260 K, respectively. It is assumed that the decrease of $2\mu_B H_{ex}$ induced by insertion of N element is about five times of the decrease by insertion of H in RFe₁₁Ti as in R_2Fe_{17} compounds [10]. The value of $2\mu_BH_{ex}(T \approx 20 \text{ K})$ for TbFe₁₁TiH and HoFe₁₁TiH is estimated to be about 277 K and 253 K. The values of CEF parameters A_{nm} were evaluated by fitting calculations to the magnetization curves at 4.2 K and higher temperatures for the single crystals of RFe₁₁TiH_x (R=Tb,Ho) (x=0,1). ### 3. Results and Discussion Table 1 lists the fitted values of CEF parameters A_{nm} . It can be seen that the value of A_{20} of RFe₁₁TiH increase about 77%~113% towards negative value compared with that of corresponding RFe₁₁Ti. In this connection, a Mössbauer study of ¹⁵⁵Gd in GdFe₁₁TiH_x (x=0,1) has shown that hydrogenation leads to about 53% increase of the electric field gradients at Gd ion site, which are proportional to A_{20} [8]. Hydrogenation has also significant effect on the high-order CEF parameters A_{nm} . The significant changes of A_{nm} cause the change of magnetic aniso- **Table 1.** The fitted values of CEF parameters A_{nm} | | A ₂₀ | A ₄₀ | A ₄₄ | A ₆₀ | A ₆₄ | |------------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | TbFe ₁₁ Ti | -90 K | -4 K | -100 K | 2 K | -87 K | | $TbFe_{11}TiH$ | -160 K | -110 K | 34 K | 20 K | -25 K | | HoFe ₁₁ Ti | -61 K | -122 K | -176 K | 432 K | -13 K | | HoFe ₁₁ TiH | -130 K | -85 K | -80 K | 62 K | -10 K | **Fig. 1.** (a) magnetization curves of TbFe₁₁Ti at 4.2 K: ● experimental data from [2]; — calculation. (b) magnetization curves of TbFe₁₁Ti at 240 K: ● experimental data from [6]; — calculation. **Fig. 2.** magnetization curves of TbFe₁₁TiH at 4.2 K: ● experimental data from [2]; — calculation. tropy. For example, the change of the easy magnetization direction induced by insertion of H for TbFe₁₁Ti, which is from the [100] to the [110] axis, mainly originates from a sign change of A_{44} . **Fig. 3.** (a) magnetization curves of HoFe₁₁Ti at 4.2 K: • experimental data from [1]; — calculation. (b) magnetization curves of HoFe₁₁Ti at 290 K: • experimental data from [6]; — calculation. Fig. 1 to 4 show the comparison of the calculations with the experimental data. The symbols represent the experimental data, and the full curves the calculations. Fig. 1(a) and 1(b) show the magnetization curves along the [100], [110] and [001] axes at 4.2 K and 240 K for TbFe₁₁Ti. Fig. 2 shows the magnetization curves along the [100], [110] and [001] axes at 4.2 K for TbFe₁₁TiH. Fig. 3(a) and 3(b) show the magnetization curves along the [100], [110] and [001] axes at 4.2 K and 290 K for HoFe₁₁Ti. Fig. 4(a) and 4(b) show the magnetization curves along the [100], [110] and [001] axes at 4.2 K and 300 K for HoFe₁₁TiH. At 4.2 K, a field-induced first-order magnetization process (FOMP) in the [001] direction was found by our calculation for HoFe₁₁TiH. It may be as in the FOMP in the DyFe₁₁Ti [14] that a continuous increase of the magnetization instead of a discontinuous jump in the experimental curves is observed for magnetic field around the critical field. The predicted FOMP by calculation need to be confirmed by the singular-point-detection technique in HoFe₁₁TiH. **Fig. 4.** (a) magnetization curves of HoFe₁₁TiH at 4.2 K: ● experimental data from [1]; — calculation. (b) magnetization curves of HoFe₁₁TiH at 300 K: ● experimental data from [7]; — calculation. ### Acknowledgements This work has been supported by the National Natural Science Foundation of China (Grant No. 10304006) and Specialized Research Fund for Doctoral Program of Higher Education. ### References - [1] S. A. Nikitin, I. S. Tereshina, N. Yu Pankratov and Yu V Skourski, Phys. Rev. B **63**, 35 (2001). - [2] S. A. Nikitin, I. S. Tereshina, V. N. Verbetsky, A. A. Salamova, and K. P. Skokov, J. Alloys Comp. 322, 42 (2001). - [3] I. S. Tereshina, P. Gaczynski, V. S. Rusakov, H. Drulis, and S. A. Nikitin, J. Phys.: Condens. Matter. 13, 8161 (2001). - [4] I. S. Tereshina, S. A. Nikitin, N. Yu Pankratov, G. A. Bezkorovajnaya, A. A. Salamova, V. N. Verbetsky, T. Mydlarz, and Yu. V. Skourski, J. Magn. Magn. Mater. 231, 213 (2001). - [5] S. A. Nikitin, I. S. Tereshina, V. N. Verbetsky, and A. A. - Salamova, J. Alloys Comp. 316, 46 (2001). - [6] C. Abadia, P. A. Algarabel, B. Garcia-Landa, M. R. Ibarra, A. del Moral, N. V. Kudrevatykh, and P. E. Markin, J. Phys.:Condens. Matter. 10, 349 (1998). - [7] S. A. Nikitin, I. S. Tereshina, Yu. V. Skourski, N. Yu Pankratov, K. P. Skokov, V. V. Zubenko, and I. V. Telegina, Physics of the Solid State 43, 290 (2001). - [8] O. Isnard, P. Vulliet, J. P. Sanchez, and D. Fruchart, J. Magn. Magn. Mater. 189, 47 (1998). - [9] D. P. F. Hurley, M. Kuzímin, J. M. D. Coey, and M. Kohgi, J. Magn. Magn. Mater. 140-144, 1027 (1995). - [10] O. Isnard, A. Sippel, M. Loewenhaupt, and R. Bewley, J. Phys.:Condens. Matter **13**, 3533 (2001). - [11] O. Moze, R. Caciuffo, H. S. Li, B. P. Hu, J. M. D. Coey, R. Osborn, and A. D. Taylor, Phys. Rev. B 42, 1940 (1990). - [12] E. Belorizky, M. A. Fremy, J. P. Gavigan, D. Givord, and H. S. Li, J. Appl. Phys. 61, 3971 (1987). - [13] M. Loewenhaupt, and I. Sosnowska, J. Appl. Phys. **70**, 5967 (1991). - [14] B. P. Hu, H. S. Li, J. M. D. Coey, and J. P. Gavigan, J. Phys.: Condens. Matter **413**, 2221 (1990).