Browse > Article
http://dx.doi.org/10.4150/KPMI.2021.28.2.164

Current Status of Titanium Smelting Technology for Powder Metallurgy  

Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of Powder Materials / v.28, no.2, 2021 , pp. 164-172 More about this Journal
Abstract
Titanium is the ninth most abundant element in the Earth's crust and is the fourth most abundant structural metal after aluminum, iron, and magnesium. It exhibits a higher specific strength than steel along with an excellent corrosion resistance, highlighting the promising potential of titanium as a structural metal. However, titanium is difficult to extract from its ore and is classified as a rare metal, despite its abundance. Therefore, the production of titanium is exceedingly low compared to that of common metals. Titanium is conventionally produced as a sponge by the Kroll process. For powder metallurgy (PM), hydrogenation-dehydrogenation (HDH) of the titanium sponge or gas atomization of the titanium bulk is required. Therefore, numerous studies have been conducted on smelting, which replaces the Kroll process and produces powder that can be used directly for PM. In this review, the Kroll process and new smelting technologies of titanium for PM, such as metallothermic, electrolytic, and hydrogen reduction of TiCl4 and TiO2 are discussed.
Keywords
Kroll process; Titanium powder; Metallothermic reduction; Electrolytic reduction; Hydrogen reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. S. Sohn: Recycling of Common Metals, KNU Press, Daegu, (2020) 17.
2 H. S. Sohn: J. of Korean Inst. of Resources Recycling, 29 (2020) 3.
3 M. A. Hunter: J. Am. Chem. Soc., 32 (1910) 330.   DOI
4 W. Kroll: Trans. Electrochem. Soc., 78 (1940) 35.   DOI
5 P. Sun, Z. Z. Fang, Y. Zhang and Y. Xia: JOM, 69 (2017) 1853.   DOI
6 A. Kracke: Titanium Alloy Powder-Accelerating Demand for Years to Come, Procd. of Titanium USA 2018, ITA, Las Vegas, NV, 2018.
7 O. Takeda and T. H. Okabe: JOM, 71 (2019) 1981.   DOI
8 David S. van Vuuren: Titanium Powder Metallurgy, Ma Qian and Francis H. (Sam) Froes (Ed.), Elsevier, (2015) 69.
9 H. S. Sohn: Resources Recycling, 30 (2021) 26.   DOI
10 A. Coggins: Titanium Metal-global Supply and Demand Trends Overview, Procd. of TITANIUM USA 2019, Mobile, AL, 25 Sept. 2019.
11 M. W. Yoon and H. S. Sohn: J. of Korean Inst. of Resources Recycling, 22 (2013) 1.
12 T. Oishi, T. H. Okabe and K. Ono: Kekinzoku, 43 (1993) 392.
13 M. Maeda, T. Yahata, K. Mitugi and T. Ikeda: JIM, 34 (1993) 599.
14 S. Hassan-Pour, C. Vonderstein1, M. Achimovicova, V. Vogt, E. Gock and B. Friedrich: Metall. Mater. Eng., 21 (2015) 101.   DOI
15 G. M. Bedinger: Titanium, USGS 2016 Minerals Yearbook (2016) 79.
16 R. O. Suzuki, K. Teranuma and K. Ono: Metall. Mater. Trans. B, 34B (2003) 287.   DOI
17 R. A. Cordes and A. Donaldson: Titanium Metal Powder Production by the Plasma Quenching Process, Final Technical Report DE-FC07-97ID13511, USA, (2000) 16.
18 S. J. Oosthuizen and J. J. Swanepoel: Conference of the South African Advanced Materials Initiative (CoSAAMI-2018), Materials Science and Engineering, 430 (2018) 1.   DOI
19 V. Duz, V. S. Moxon, A. G. Klevtosv and V. Sukhoplyuyev: ADMA Process for Hydrogenated Titanium Powder Production, Procd. of Titanium 2013, Las Vegas NV, Oct. 6-9 (2013).
20 V. S. Moxson, V. A. Duz, A. G. Klevtsov, V. D. Sukhoplyuyev, M. D. Sopka, Y. V. Shuvalov and M. Matviychuk: USA, US 9,067.264 B2 (2015).
21 W. Kroll: J. of The Franklin Institue, 260 (1955) 169.   DOI
22 Z. Z. Fang, J. D. Paramore, P. Sun, K. S. Ravi Chandran, Y. Zhanga, Y. Xia, F. Cao, M. Koopman and M. Free: Int. Mater. Rev., 63 (2018) 407.   DOI
23 T. H. Okabe: Keikinzoku, 55 (2005) 537.
24 G. Crowley: Adv. Mater. Processes, 161 (2003) 25.
25 G. Z. Chen, D. J. Fray and T. W. Farthing: Nature, 407 (2000) 361.   DOI
26 E. Ahmadi and R. O. Suzuki: Metall. Mater. Trans. B, 51B (2020) 140.
27 C. Zheng, T. Ouchi, L. Kong, Y. Taninouchi and T. H. Okabe: Metall. Mater. Trans. B, 50B (2019) 1652.
28 R. Bolivar and B. A. Ramon: IJMET, 10 (2019) 272.
29 Y. Zhang, Z. Z. Fang, Y. Xia, P. Sun, B. V. Devener, M. Free, H. Lefler and S. Zheng: Chem. Eng. J., 308 (2017) 299.   DOI
30 H. Lefler, Z. Z. Fang, Y. Zhang, P. Sun and Y. Xia: Metall. Mater. Trans. B, 49B (2018) 2998.
31 T. H. Okabe: Keikinzoku, 55 (2005) 537.
32 T. H. Okabe, C. Zheng and Y. Taninouchi: Metall. Mater. Trans. B, 49B (2018) 1056.
33 W. V. Tonder: M.S. Thesis, SOUTH AFRICAN TITANIUM: Techno-Economic Evaluation of Alternatives to the Kroll Process, Stellenbosch Univ. South Africa, (2010) 108.
34 L. Kong, T. Ouchi, C. Zheng and T. H. Okabe: J. Electrochem. Soc., 166 (2019) E429.   DOI