• Title/Summary/Keyword: rare element

Search Result 257, Processing Time 0.03 seconds

3D FEM analysis of earthquake induced pounding responses between asymmetric buildings

  • Bi, Kaiming;Hao, Hong;Sun, Zhiguo
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.377-386
    • /
    • 2017
  • Earthquake-induced pounding damages to building structures were repeatedly observed in many previous major earthquakes. Extensive researches have been carried out in this field. Previous studies mainly focused on the regular shaped buildings and each building was normally simplified as a single-degree-of-freedom (SDOF) system or a multi-degree-of-freedom (MDOF) system by assuming the masses of the building lumped at the floor levels. The researches on the pounding responses between irregular asymmetric buildings are rare. For the asymmetric buildings subjected to earthquake loading, torsional vibration modes of the structures are excited, which in turn may significantly change the structural responses. Moreover, contact element was normally used to consider the pounding phenomenon in previous studies, which may result in inaccurate estimations of the structural responses since this method is based on the point-to-point pounding assumption with the predetermined pounding locations. In reality, poundings may take place between any locations. In other words, the pounding locations cannot be predefined. To more realistically consider the arbitrary poundings between asymmetric structures, detailed three-dimensional (3D) finite element models (FEM) and arbitrary pounding algorithm are necessary. This paper carries out numerical simulations on the pounding responses between a symmetric rectangular-shaped building and an asymmetric L-shaped building by using the explicit finite element code LS-DYNA. The detailed 3D FEMs are developed and arbitrary 3D pounding locations between these two buildings under bi-directional earthquake ground motions are investigated. Special attention is paid to the relative locations of two adjacent buildings. The influences of the left-and-right, fore-and-aft relative locations and separation gap between the two buildings on the pounding responses are systematically investigated.

Osteochondroma of the Lumbar Spines without Clear Demarcation from Surrounding Normal bone Tissues - Report of A Case - (정상 골조직과 경계가 불명확한 요추 골연골종 - 증례보고 -)

  • Kim, Joo-Han;Oh, Woo-Suk;Chung, Hung-Seob;Lee, Ki-Chan;Suh, Jung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.6
    • /
    • pp.790-794
    • /
    • 2001
  • Spinal osteochondroms are very rare, and are thought to arise through a process of progressive endochondral ossification of aberrant cartilage of a growth plate, as a consequence of congenital defect or trauma. A case of diffuse type osteochondroma involving the posterior elements of L1-L5 that progressed after laminectomy in a 33-year-old man is reported. Usually, the spinal osteochondroma shows clear demarcation between tumor margin and normal spine elements, and can be exised completely. However, there was no clear demarcation between tumor and normal spine element in our case and therefore it was not possible to removal completely.

  • PDF

A Study on the Proper Fillet Shape in Fracture Mechanical Aspect (파괴역학적 관점에서의 적정 필렛 형상에 관한 연구)

  • Kim, Chul;Yang, Won-Ho;Cho, Myoung-Rae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.214-220
    • /
    • 1999
  • In order to use effectively a machinery part with fillet, it is necessary to determine a proper fillet shape in design step, Study of such problem by fracture mechanical criterion is rare. So, this paper focuses on the design of fillet radius in fracture mechanical aspect. Finite element method was used to obtain crack tip stress intensity factor. Stress intensity factor was calculated by COD(crack opening displacement0method proposed by Ingraffea and Manu. The parameter used in this study are thickness ration, filet radium and crack length . If fillet radius increase , crack propagation may be accelerated. Critical crack length is inversely proportional to fillet radius.

  • PDF

Design and Analysis of Magnetizing Machine for High Speed Permanent Machines (초고속 영구자석 회전기의 회전자 착자기 설계 및 해석)

  • Jung, Soo-Jin;Kang, Do-Hyun;Kim, Dong-Hee;Jeong, Yeon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.586-589
    • /
    • 2001
  • In Case of High speed PM machines with surface-mounted magnet. A rare-earth PM with high remanence flux density is used on the rotor. Therefore, It is very difficult to adhesion and assemble PM on the surface of rotor, because of very repulsive force between magnets. So, for solving this problem, rotor with surface-mounted magnet is wholly magnetized after mounting magnetic-material on the surface. In this paper, In order to Magnetize rotor with surface-mounted PM, magnetizing machine is designed, analyzed and simulated for large PM machines using the 1dimensional analytical method and 2dimensional finite element method. (20-FEM).

  • PDF

Magnetic Properties and Microstructures of Melt Spun Misch Metal-Ferroboron Alloys

  • Ko, K.Y.;Booth, J.G.;Al-Kanani, H.J.;Lee, H.Y.
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.82-85
    • /
    • 1996
  • Magnetic properties and microstructures of melt spun misch metal-ferroboron alloys were investigated. The major phase is the tetragonal (rare earth)$_2Fe_{14}B$ phase. Magnetic properties showed coercivity of 5.6 kOe, remanence of 7.85 kG, and so energy product 8.9 MGOe. Microsturctures in optimum properties showed that matrix was composed of Ce-rich phase while second phase La-rich-oxygen phase with less amount of Fe element than matrix, and triple junction with La-rich phase contrary to matrix.

  • PDF

Design Optimization and Fabrication of an Advanced High Gradient Magnetic Separator

  • Park, E.B;Choi, S.D;Yang, C.J
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.59-64
    • /
    • 2000
  • A drum type of high gradient magnetic separator was designed and optimized by computer simulations. The magnetic separator consists of high performance rare earth $(Nd_2Fe_14B)$ permanent magnets and magnetic yokes of extremely low carbon steel interconnecting the permanent magnets. Magnetic circuits of the separator were simulated for the aim of the least cost, highest magnetic strength and most efficient function by using specialized S/W (Vector Field Program) employing the Finite Element Method. The magnetic flux density was provided to be strong enough to collect the invisible fine metal particles from the surface of hot rolled steel plate with the efficiency of almost 95%.

  • PDF

X-Ray Magnetic Circular Dichroism (X-선 자기 원형 이색성)

  • Kim, Jae-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.201-205
    • /
    • 2010
  • X-ray magnetic circular dichroism (XMCD) has been used as an important tool of magnetics due to its unique abilities to measure element-specific magnetic properties and to separate the orbital and the spin magnetic moments. These abilities allow researchers to access the microscopic origin of the magnetic properties of transition metal and rare earth compounds. In this report, I explain the principle of XMCD and the experimental set-up. Recent a few research examples using XMCD will be also introduced.

Structural Vibration Characteristics of a MW-Class Wind Turbine Tower Considering Earthquake Base Excitation (지진기반 가진효과를 고려한MW 급 풍력발전기 타워의 구조진동 특성연구)

  • Kim, Dong-Man;Park, Kang-Kyun;Kim, Dong-Hyun;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.616-620
    • /
    • 2009
  • Modern wind turbines have been mainly erected in region where earthquake are rare or normally weak, especially Korea was thought as safety zone from earthquake. But recently, the earthquake occurs more and more frequently. So, the wind turbine design is required the structural and functional stability under the earthquake. The earthquake can influence normal operation, even if a weak earthquake. There are two ways to review the design under earthquake using Computer Applied Engineering (CAE). One is the Response Spectrum Analysis (RSA) the other is Time History Analysis (THA). In this research, dynamic response on time is obtained under the earthquake by taking into account ground accelerogram consistent with the relevant standards applied to the turbine foundation.

  • PDF

The design of high-capacity BLDC motor with maximum torque in low speed (저속영역에서 최대 토크 발생이 가능한 대용량 BLDC 모터의 설계)

  • Cho S.H.;Kim C.U.;Bin J.G.;Cho S.E.;Choi C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.824-827
    • /
    • 2003
  • Recently, Development of Rare Earth Permanent magnet with the high remanence, high coercivity allow the design of brushless motors with very high efficiency over a wide speed range. Cogging torque is produced in a permanent magnet by magnetic attraction between the rotor mounted permanent magnet and the stator teeth. It is an undesired effect that contributes to the machines output ripple, vibration, and noise. This cogging torque can be reduced by variation of magnet arc length, airgap length, magnet thickness, shifting the magnetic pole and varying the radial shoe depth and etc. In this paper, Some airgap length and magnet arc that reduce cogging torque are found by FEM(Finite element method). The SPM type of high-capacity BLDC motor is optimized as a sample model.

  • PDF

A MODEL STUDY ON MULTISTEP RECOVERY OF ACTINIDES BASED ON THE DIFFERENCE IN DIFFUSION COEFFICIENTS WITHIN LIQUID METAL

  • CHUN, YOUNG-MIN;SHIN, HEON-CHEOL
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.588-595
    • /
    • 2015
  • This study presents an effective method for additional recovery of residual actinides in liquid electrodes after the electrowinning process of pyroprocessing. The major distinctive feature of this method is a reactor with multiple reaction cells separated by partition walls in order to improve the recovery yield, thereby using the interelement difference in diffusion coefficients within the liquid electrode and controlling the selectivity and purity of element recovery. Through an example of numerical simulation of the diffusion scenarios of individual elements, we verified that the proposed method could effectively separate the actinides (U and Pu) and rare-earth elements contained in liquid cadmium. We performed a five-step consecutive recovery process using a simplified conceptual reaction cell and recovered 58% of the initial amount of actinides (U + Pu) in high purity (${\geq}99%$).