• Title/Summary/Keyword: rare earth

Search Result 973, Processing Time 0.028 seconds

The analysis of impurities in rare earth oxide for fluorescent substance by ICP-MS (ICP-MS에 의한 형광체용 $(Y,\;Eu)_2O_3$ 중 불순물 분석 연구)

  • Kim, Sang-Kyoung;Jang, Seung-Kyu
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 1994
  • A survey was made on detection limit, reproducibility, matrix effect, linear dynamic range and the memory effect of yttrium and europium in order to analyze rare earth elements which exist as impurities in the rare earth oxide which is raw materials of fluorescent substance. When analysing a certain amount of thulium quantitatively using inductively coupled plasma mass spectrometry, it was found that the analysis was interfered with $EuO^+$ which is one of polyatomic ions caused by plasma. As the intensity of thulium linearly proportional to the europium concentration, it was possible to the determine the actual concentration of thulium.

  • PDF

A Study on the Design of BLDC Motor Replacing Ferrite Magnet with Rare Earth Magnet (페라이트 자석을 희토류 자식으로 교체한 BLDC 전동기의 설계에 관한 연구)

  • Chung, Tae-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.121-129
    • /
    • 2008
  • This paper deals with the design of BLDC motor replacing ferrite magnet with rare earth magnet. Electric machinery system using ferrite magnet motor is already widespread in large numbers. Electrical appliance makers have a tendency to adhere to existing system using ferrite magnet motors because of redesigning the whole system. This paper designs the rare earth magnet motor untouching the external system dimension and motor outer size. To do the design simply, finite element package is used iteratively To reduce the cogging torque effect and magnetic saturation, stator yoke shape and the groove of the end face of yoke are redesigned.

The brief review on Coal origin and distribution of rare earth elements in various Coal Ash Samples

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2018
  • Rare earth elements together with Y and Sc (REEs) are essential in the development of technology for clean and efficient use of energy. In recent years coal deposits have much attention and attracted as a promising alternative raw sources for rare earth elements, not only because the REEs concentrations in many coals or coal ashes are equal to or higher than those found in conventional types of REEs ores but also because of the world wide demand for REEs in recent years has been greater than supply. In the coal ashes, REEs are mainly associated with carbonates, silicates and aluminosilicates in ashes at 800 and $1100^{\circ}C$. These elements are known to be powerful environmental tracers in natural biogeochemical compartments. In this study, to reviewed the REEs originating and distribution patterns in coal ash samples from the bedrock and/or soil weathering that were entrapped by lichens and mosses was investigated. The REEs patterns of different organisms species allowed minor influence of the species to be highlighted compared to the regional lithology.

Effect of Rare Earth Elements on the Microstructures of Thin-Wall Ductile Iron Castings (희토류원소에 의한 박육구상흑연주철품의 조직변화)

  • Kim, Ji-Yeong;Choi, Jun-Oh;Park, Sung-Tak;Han, Yun-Sung;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.187-194
    • /
    • 2003
  • The effect of rare earth elements (R.E)(from 0.0 to 0.04%) on the microstructure formation and mechanical properties of thin-wall ductile iron castings were investigated. Tensile strength and hardness were decreased with an addition of up to 0.03% rare-earth elements. After addition of more than 0.03%, those were increased. Graphite nodule sizes were the finest, nodule count was the highst regardless of thickness and volume fraction of ferrite was the largest when that was 0.02%. However, the nodule count was decreased with increasing R.E. Futhermore. nodule size increased with increasing thickness and the volume fraction of ferrite decreased as that was increased. Nodularity was increased regardless of the thickness as that was increased. The castings of minium thickness up to 3 mm was possible without the formation of chill.

The Doping Effects of Intermediate Rare-earth Ions (Dy, Y and Ho) on BaTiO3 Ceramics (BaTiO3 세라믹 내 희토류(Dy, Y, Ho) 첨가 효과)

  • Park, Kum-Jin;Kim, Chang-Hoon;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.181-188
    • /
    • 2009
  • The electrical property and microstructure in $BaTiO_3$ ceramics doped rare-earth ions with intermediate ionic size ($Dy^{3+},Ho^{3+},Y^{3+}$) were investigated. Microstructures have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Incorporation of rare-earth ions to $BaTiO_3$ ceramics depended on their ionic radius sensitively. Compared to Ho and Y ions, Dy ions provide $BaTiO_3$ ceramics with the high rate of densification and well-developed shell formation, due to their high solubility in the $BaTiO_3$ lattice, but the microstructure of Dy doped $BaTiO_3$ ceramics is unstable at high temperature, because Dy ions could not play a role of grain growth inhibition, leading to diffuse into $BaTiO_3$ lattice continuously after completion of densification during sintering. Comparing electrical property and microstructure, it is shown that the reliability of capacitor improved by high shell ratio.

The effect of lanthanum on the solidification curve and microstructure of Al-Mg alloy during eutectic solidification

  • Xie, Shikun;Yi, Rongxi;Guo, Xiuyan;Pan, Xiaoliang;Xia, Xiang
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.77-85
    • /
    • 2015
  • The influence of rare earth lanthanum (La) on solidification cooling range, microstructure of aluminum-magnesium (Al-Mg) alloy and mechanical properties were investigated. Five kinds of Al-Mg alloys with rare earth content of La (i.e., 0, 0.5, 1.0, 1.5 and 2.0 wt.%) were prepared. Samples were either slowly cooled in furnace or water cooled. Results indicate that the addition of the rare earth (RE) La can significantly influence the solidification range, the resultant microstructure, and tensile strength. RE La can extend the alloy solidification range, increase the solidification time, and also greatly improve the flow performance. The addition of La takes a metamorphism effect on Al-Mg alloy, resulting in that the finer the grain is obtained, the rounder the morphology becomes. RE La can significantly increase the mechanical properties for its metamorphism and reinforcement. When the La content is about 1.5 wt.%, the tensile strength of Al-Mg alloy reaches its maximum value of 314 MPa.

Investigation of thorium separation from rare-earth extraction residue via electrosorption with carbon based electrode toward reducing waste volume

  • Aziman, Eli Syafiqah;Ismail, Aznan Fazli;Muttalib, Nabilla Abdul;Hanifah, Muhammad Syafiq
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2926-2936
    • /
    • 2021
  • Rare-earth (RE) industries generate a massive amount of radioactive residue containing high thorium concentrations. Due to the fact that thorium is considered a non-economic element, large volume of these RE processed residues are commonly disposed of without treatment. It is essential to study an appropriate treatment that could reduce the volume of waste for final disposition. To this end, this research investigates the applicability of carbon-based adsorbent in separating thorium from aqueous phase sulphate is obtained from the cracking and leaching process of solid rare-earth by-product residue. Adsorption of thorium from the aqueous phase sulphate by carbon-based electrodes was investigated through electrosorption experiments conducted at a duration of 180 minutes with a positive potential variable range of +0.2V to +0.6V (vs. Ag/AgCl). Through this research, the specific capacity obtained was equivalent to 1.0 to 5.14 mg-Th/g-Carbon. Furthermore, electrosorption of thorium ions from aqueous phase sulphate is found to be most favorable at a higher positive potential of +0.6V (vs. Ag/AgCl). This study's findings elucidate the removal of thorium from the rare-earth residue by carbon-based electrodes and simultaneously its potential to reduce disposal waste of untreated residue.

Effect of Oxidation Behavior of (Nd,Dy)-Fe-B Magnet on Heavy Rare Earth Extraction Process

  • Park, Sangmin;Nam, Sun-Woo;Lee, Sang-Hoon;Song, Myung-Suk;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.91-96
    • /
    • 2021
  • Rare earth magnets with excellent magnetic properties are indispensable in the electric device, wind turbine, and e-mobility industries. The demand for the development of eco-friendly recycling techniques has increased to realize sustainable green technology, and the supply of rare earth resources, which are critical for the production of permanent magnets, are limited. Liquid metal extraction (LME), which is a type of pyrometallurgical recycling, is known to selectively extract the metal forms of rare earth elements. Although several studies have been carried out on the formation of intermetallic compounds and oxides, the effect of oxide formation on the extraction efficiency in the LME process remains unknown. In this study, microstructural and phase analyses are conducted to confirm the oxidation behavior of magnets pulverized by a jaw crusher. The LME process is performed with pulverized scrap, and extraction percentages are calculated to confirm the effect of the oxide phases on the extraction of Dy during the reaction. During the L ME process, Nd is completely extracted after 6 h, while Dy remains as Dy2Fe17 and Dy-oxide. Because the decomposition rate of Dy2Fe17 is faster than the reduction rate of Dy-oxide, the importance of controlling Dy-oxide on Dy extraction is confirmed.

Amorphous Chalcogenide Solids Doped with Rare-Earth Element : Fluorescence Lifetimes and the Glass Structural Changes (희토류 원소 첨가 비정질 찰코지나이드 : 형광 수명과 유리 구조 변화의 관계)

  • Choi Yong Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.696-702
    • /
    • 2004
  • Lifetime of excited electronic states inside the 4f configuration of rare-earth elements embedded in chalcogenide glasses is very sensitive to medium-range structural changes of the host glasses. We have measured lifetimes of the 1.6$\mu\textrm{m}$ emission originating from Pr$\^$3+/ : ($^3$F$_3$, $^3$F$_4$)\longrightarrow$^3$H$_4$ transition in amorphous chalcogenide samples consisting of Ge, Sb, and Se elements. The measured lifetimes fumed out to have their maximum at the mean coordination number of -2.67, which arises accordingly from structural changes of the host glasses from 2 dimensional layers to 3 dimensional networks. This new finding supports that the so-called topological structure model together with chemically ordered network model is adequate to explain relationship between the emission properties of rare-earth elements and the medium-range structures of amorphous chalcogenide hosts with a large covalent bond nature. Thus, it is validated to predict site distribution and lifetime of rare-earth elements doped in chalcogenide glasses simply based on their mean coordination number.

Recovery of Residual LiCl-KCl Eutectic Salts in Radioactive Rare Earth Precipitates (방사성 희토류 침전물내 잔류하는 LiCl-KCl 공융염의 회수)

  • Eun, Hee-Chul;Yang, Hee-Chul;Kim, In-Tae;Lee, Han-Soo;Cho, Yung-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.303-309
    • /
    • 2010
  • For the pyrochemical process of spent nuclear fuels, recovery of LiCl-KCl eutectic salts is needed to reduce radioactive waste volume and to recycle resource materials. This paper is about recovery of residual LiCl-KCl eutectic salts in radioactive rare earth precipitates (rare earth oxychlorides or oxides) by using a vacuum distillation process. In the vacuum distillation test apparatus, the salts in the rare earth precipitates were vaporized and were separated effectively. The separated salts were deposited in three positions of the vacuum distillation test apparatus or were collected in the filter and it is difficult to recover them. To resolve the problem, a vacuum distillation and condensation system, which is subjected to the force of a temperature gradient at a reduced pressure, was developed. In a preliminary test of the vacuum distillation/condensation recovery system, it was confirmed that it was possible to condense the vaporized salts only in the salt collector and to recover the condensed salts from the salt collector easily.