• Title/Summary/Keyword: rapid thermal annealing

Search Result 571, Processing Time 0.025 seconds

Silicide Formation of Atomic Layer Deposition Co Using Ti and Ru Capping Layer

  • Yoon, Jae-Hong;Lee, Han-Bo-Ram;Gu, Gil-Ho;Park, Chan-Gyung;Kim, Hyung-Jun
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.202-206
    • /
    • 2012
  • $CoSi_2$ was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt ($Co(iPr-AMD)_2$) as a precursor and $NH_3$ as a reactant; this reaction produced a highly conformal Co film with low resistivity ($50\;{\mu}{\Omega}cm$). To prevent oxygen contamination, $ex-situ$ sputtered Ti and $in-situ$ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and $O_2$ as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that $CoSi_2$ was in a poly-crystalline state and formed at over $800^{\circ}C$ of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, $CoSi_2$ about 40 nm thick was formed while the $SiO_x$ interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of $CoSi_2$.

Effects of Rapid Thermal Annealing on the Properties of AZO Thin Films Grown by Radio-frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 증착된 AZO 박막의 특성에 대한 급속 열처리 효과)

  • Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.377-383
    • /
    • 2009
  • Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire substrate by using radio-frequency magnetron sputtering and were performed in the temperature range of $600-900^{\circ}C$ by rapid thermal annealing (RTA). The crystallographic structure and the surface morphology were investigated by using X-ray diffraction and scanning electron microscopy, respectively. The crystallinity of the films was improved with increasing the annealing temperature and the average size of crystalline grains was found to be 50 nm. All the thin films showed an average transmittance of 92% in the wavelength range of 400-1100 nm. As the annealing temperature was increased, the bandgap energy was decreased and the violet photoluminescence (PL) signal at 400 nm replaced the ultraviolet PL signal. The electrical properties of the thin films showed a significant dependence on the annealing temperature.

Properties of the carbon electrode perovskite solar cells with various annealing processes (열처리 방법에 따른 카본전극 페로브스카이트 태양전지의 특성 변화)

  • Song, Ohsung;Kim, Kwangbea
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.26-32
    • /
    • 2021
  • The photovoltaic properties and microstructure changes were observed while perovskite solar cells (PSCs) with a fabricated carbon electrode were formed using the following annealing processes: hot-plate, oven, and rapid thermal annealing (RTA). Perovskite solar cells with a glass/FTO/compact TiO2/meso TiO2/meso ZrO2/carbon structure were prepared. The photovoltaic properties and microstructure changes in the PSCs were analyzed using a solar simulator, optical microscopy, and field emission scanning electron microscopy. An analysis of the photovoltaic properties revealed outstanding properties when RTA was applied to the cells. Microstructure analysis showed that perovskite was formed locally on the carbon electrode surface when hot-plate and oven annealing were applied. On the other hand, PSC with RTA showed a flat surface without extra perovskite agglomeration. Denser perovskite formed on the porous carbon electrode layer with RTA showed superior photovoltaic properties. These results suggest that the RTA process might be appropriate for the massive production of carbon electrode PSCs considering the processing time.

Annealing Behavior of Ar Implant Induced Damage in Si (Ar이 이온주입된 Si 기판의 결함회복 특성)

  • 김광일;이상환;정욱진;배영호;권영규;김범만;삼야박
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.468-473
    • /
    • 1993
  • Damages on Si substrate induced by Ar ion implantation and it annealing behavior during rapid thermal annealing were investigated by the cross-sectional TEM (transmissin electron microscopy), RB(Rutherfordbackscattering) spectra an dthermal wave (TW) modulation reflectance methods. Continuous amorphous layer extending to the surface were generated by Ar ion implantation for higher doses than 1 $\times$1015cm-2. The recrystallization of the amorphous layer prodeeded as the annealing temperature increased . However the amorphous /crystal interfacial undulations caused the micro twins and damage clusters. Damage clusters generated by lower doses than 1 $\times$1015 cm-2 disappeared slowly as the annealing temperature increased, but even at 110$0^{\circ}C$ a few damage clusters still remained.

  • PDF

EffEct of vacuum annealing on an oxidation of milled WC-Co powder (분쇄된 초경합금 분말의 산화에 미치는 진공열처리 효과)

  • 김소나
    • Journal of Powder Materials
    • /
    • v.3 no.2
    • /
    • pp.91-96
    • /
    • 1996
  • The effect of vacuum annealing on the oxidation behavior of milled WC-15%Co powder mixture has been studied. A cobalt component in the milled powder mixture was oxidized preferentially above 175$^{\circ}C$ in air. The specimens showed a steady increase in weight at 175$^{\circ}C$ but did constant weight followed by rapid increase in specimen weight at the beginning above 20$0^{\circ}C$. Oxidation of the milled powder mixture was significantly suppressed by vacuum annealing at 30$0^{\circ}C$ for 10 h. Suppression of oxidation by vacuum annealing and different oxidation behaviors of the milled powder mixture between 175$^{\circ}C$ and 20$0^{\circ}C$, were attributed to removal of strain energy stored in the cobalt powder during vacuum annealing or oxidation treatment above 20$0^{\circ}C$. The role of stored strain energy on oxidation of milled WC-15%Co powder mixture was proved by X-ray diffraction method and differential thermal analysis.

  • PDF

Effect of Annealing on the Dielectric Properties and Microstructures of Thin Tantalum Oxide Film Deposited with RF Reactive Sputtering

  • Lee, Gyeong-Su;Nam, Kee-Soo;Chun, Chang-Hwan;Kim, Geun-Hong
    • ETRI Journal
    • /
    • v.13 no.2
    • /
    • pp.21-27
    • /
    • 1991
  • Effects of annealing on the dielectric properties and microstructures of thin tantalum oxide film(25nm) deposited on p-type Si substrate with rf reactive magnetron sputtering were investigated. The leakage current density was remarkably reduced from $10^-8$ to $10^-12$ A/$\mum^2$at the electric field of 2MV/cm after rapid thermal annealing(RTA) in $O_2$at $1000^{\circ}C$, while little leakage reduction was observed after furnace annealing in $O_2$ at $500^{\circ}C$. The structural changes of thin tantalum oxide film after annealing were examined using high resolution electron microscope(HREM). The results of HREM show that substantial reduction in the leakage current density after the RTA in $O_2$ can be attributed to crystallization and reoxidation of the thin amorphous tantalum oxide film.

  • PDF

Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells (디지털 합금 InGaAlAs 다중 양자 우물의 열처리 온도에 따른 발광 특성)

  • Cho, Il Wook;Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.321-326
    • /
    • 2013
  • The effect of rapid thermal annealing (RTA) on the optical properties of digital-alloy InGaAlAs multiple quantum well (MQW) structures have been investigated by using photoluminescence (PL) and time-resolved PL measurements as a function of RTA temperature. The MQW samples were annealed from $700^{\circ}C$ to $850^{\circ}C$ for 30 s in a nitrogen atmosphere. The MQW sample annealed at $750^{\circ}C$ exhibited the strongest PL intensity and the narrowest FWHM (Full width at half maximum), indicating the reduced nonradiative recombination centers and the improved interfaces between the wells and barriers. The MQW samples annealed at $800^{\circ}C$ and $850^{\circ}C$ showed the decreased PL intensities and blueshifted PL peaks compared to $750^{\circ}C$-annealed sample. The blueshift of PL peak with increasing RTA temperatures are ascribed to the increase of aluminum due to intermixing of gallium (Ga) and aluminum (Al) in the interfaces of InGaAs/InAlAs short-period superlattices. The decrease of PL intensity after annealing at $800^{\circ}C$ and $850^{\circ}C$ are attributed to the interface roughening and lateral composition modulation caused by the interdiffusion of Ga and Al and indium segregation, respectively. With increasing RTA temperature the PL decay becomes slower, indicating the decrease of nonradiative defect centers. The optical properties of digital-alloy InGaAlAs MQW structures can be improved significantly with optimum RTA conditions.

Fabrication of Nanostructures by Dry Etching Using Dewetted Pt Islands as Etch-masks (Dewetting된 Pt Islands를 Etch Mask로 사용한 GaN 나노구조 제작)

  • Kim, Taek-Seung;Lee, Ji-Myon
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • A method for fabrication of nano-scale GaN structure by inductively coupled plasma etching is proposed, exploiting a thermal dewetting of Pt thin film as an etch mask. The nano-scale Pt metal islands were formed by the dewetting of 2-dimensional film on $SiO_2$ dielectric materials during rapid thermal annealing process. For the case of 30 nm thick Pt films, pattern formation and dewetting was initiated at temperatures greater $600^{\circ}C$. Controlling the annealing temperature and time as well as the thickness of the Pt metal film affected the size and density of Pt islands. The activation energy for the formation of Pt metal island was calculated to be 23.2 KJ/mole. The islands show good resistance to dry etching by a $CF_4$ based plasma for dielectric etching indicating that the metal islands produced by dewetting are suitable for use as an etch mask in the fabrication of nano-scale structures.

Microstructure and Characterisistics of Near Surface of $As^+$Ion Implanted Si (A$s^+$이온을 주입시킨 Si 표면부 미세구조와 특성)

  • Shin, D.W.;Choi, C.;Park, C.G.;Kim, J.C.
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.213-219
    • /
    • 1992
  • The microstructure, dopant distribution and electrical properties of the $As^{+}$ ion-implanted surface layer differ significantly depending on the methods of subsequent heat treatments, furnace annealing(FA) and rapid thermal annealing(RTA). The amorphous layer created by ion implantation was recrystallized during the thermal annealing through solid phase epitaxial (SPE) growth. The dopant distribution and electrical properties are discussed with respect to the TEM cross-sectional microstructure observed. The microstructure, dopant distribution and electrical properties depended upon especially the annealing time of the heat treatment.

  • PDF