• Title/Summary/Keyword: rapid sintering

Search Result 214, Processing Time 0.022 seconds

Manufacture of Precsion Model Using Laser Melting Process (레이저 용융 적층 공정을 이용한 정밀 형상 제작)

  • 김재도;전병철;권택열;이영곤;신동훈
    • Laser Solutions
    • /
    • v.3 no.3
    • /
    • pp.21-29
    • /
    • 2000
  • For the direct metal shape processing the powder feed device which is different from the widely used in rapid prototyping. is developed, The three dimensional object is shaped with the melting metal powder. The developed research has applied to rapid prototyping in ultraprecision for MEMS and medical science fields required of rapid manufacture of complex shape. The goal of this study make 3D model which has precision accuracy. Powder spreading apparatus has been more improved because that the control of powder spread is very important in layer manufacturing. It consists of the vibration motor, nozzle and tube which supplies various metal powder. This apparatus could control the spreading velocity that could control powder spreading thickness. Laser on/off switch was adapted because laser scanning velocity must be preserved constantly to prevent heat transformation of laser overheating. The error between sintered thickness md experimental one occurred by shrinkage in sintering melting process. The problem of heat transformation was solved by On/Off switching system.

  • PDF

Determination of Part Orientation and Packing in SLS Process (SLS에서의 자동적인 조형자세 및 배치 결정에 관한 연구)

  • Hur, Sung-Min;Chang, Pok-Keun;Choi, Kyung-Hyun;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.139-147
    • /
    • 1999
  • Rapid Prototyping has made a drastic change in all industries which needs to reduce the time for the development of new products. Orientation and packing in rapid prototyping is considered as the most important factors to maximize the utilization of space in the build chamber and reduce build time. However, the decision of these parameter is mainly dependant on the operators's experience. This paper presents the methodology to find the optimal build layout considering an orientation and packing of multiple parts in SLS processing. Each part is represented as a voxel structure to deal with the inefficiency in a bounding box approach. Test results show that the adapted BL algorithm with a genetic algorithm(GA) can be applicable to a real industry.

  • PDF

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

A Study on Polyamide-6 Sintering and Effect by $CO_2$ Laser ($CO_2$ Laser에 의한 Polyamide-6 소결과 그 영향에 관한 연구)

  • Bae S.W.;Kim D.S.;Ahn Y.J.;Kim H.I.;Choi K.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.197-198
    • /
    • 2006
  • In the solid freeform fabrication (SFF) system using selective laser sintering (SLS), polyamide-12 powder is currently recognized as general material. In this study, some kinds of polyamide-6 powders with different shape and particlesize were fabricated to investigate the formability, the microstructure and mechanical properties. Also, to develop a more elaborate and rapid system, this study employs a new SLS device with a 3-axis dynamic focusing scanner system instead of the existing fe lens used in commercial SLS. Polyamide-6 powders having the average size of 100 m were treated thermally in order to keep the spherical symmetry in shape. These polyamide-6 powders were mixed with polyamide-12 powders having the average size of 50 m to give the bimodal distribution of size. These mixed powders showed the better fabrication in the selective laser sintering process because the smaller particles of polyamide-11 played an important role in the compact packing of powders by filling the void space between the large particles of polyamide-6. Also, Experiments have performed to evaluate the effect of a scanning path and sintering parameters by fabricating the various 3D objects.

  • PDF

Evaluation of Mechanical Properties and Microstructure Depending on Sintering Heating Rate of IN 939 W Alloy (IN 939 W 합금의 소결 승온 속도에 따른 물리적 특성과 미세조직 분석)

  • Jeon, Junhyub;Lee, Junho;Seo, Namhyuk;Son, Seung Bae;Jung, Jae-Gil;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.399-410
    • /
    • 2022
  • Changes in the mechanical properties and microstructure of an IN 939 W alloy according to the sintering heating rate were evaluated. IN 939 W alloy samples were fabricated by spark plasma sintering. The phase fraction, number density, and mean radius of the IN 939 W alloy were calculated using a thermodynamic calculation. A universal testing machine and micro-Vickers hardness tester were employed to confirm the mechanical properties of the IN 939 W alloy. X-ray diffraction, optical microscopy, field-emission scanning electron microscopy, Cs-corrected-field emission transmission electron microscopy, and energy dispersive X-ray spectrometry were used to evaluate the microstructure of the alloy. The rapid sintering heating rate resulted in a slightly dispersed γ' phase and chromium oxide. It also suppressed the precipitation of the η phase. These helped to reinforce the mechanical properties.

Fabrication of Calcium Phosphate Scaffolds Using Projection-based Microstereolithography and Their Effects on Osteogenesis (투영기반 마이크로 광조형 기술을 이용한 3 차원 인산칼슘 인공지지체 제작 및 골 분화 영향)

  • Seol, Young-Joon;Park, Ju-Young;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1237-1242
    • /
    • 2011
  • Calcium phosphates are very interesting materials for use as scaffolds for bone tissue engineering. These materials include hydroxyapatite (HA) and tricalcium phosphate (TCP), which are inorganic components of human bone tissue and are both biocompatible and osteoconductive. Although these materials have excellent properties for use as bone scaffolds, many researchers have used these materials as additives to synthetic polymer scaffolds for bone tissue regeneration, because they are difficult to manufacture three-dimensional (3D) scaffolds. In this study, we fabricated 3D calcium phosphate scaffolds with the desired inner and outer architectures using solid freeform fabrication technology. To fabricate the scaffold, the sintering behavior was evaluated for various sintering temperatures and slurry concentrations. After the fabrication of the calcium phosphate scaffolds, in-vitro cell proliferation and osteogenic differentiation tests were carried out.

A New Process for Liquid Phase Sintering of W-Cu Composite; Fluidized Beds Reductio Method (W-Cu 합금의 액상소결을 위한 새로운 공정의 개발:유동층 환원법)

  • Ihn, Tae-Hyoung;Lee, Seok-Woon;Joo, Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.393-400
    • /
    • 1994
  • A new process for uniform coating of copper to submicron tungsten powder has been developed. W-Cu alloy where copper can be uniformly distibuted has been made by the liquid phase sintering of thus prepared tungsten powder. It has been found that copper content can be lowered less than IOwt. % in our new process, maintaining the uniform distribution of copper in W-Cu alloy. Relative density above 96% was obtained after the liquid phase sintering when small amount of cobalt was added. It was revealed that the rapid increase of densification rate was due to the enhancement of wettability between tungsten particle and liquid copper.

  • PDF

A Study on Generation of Laser Scanning Path and Scanning Control (레이저 주사 경로 생성 및 주사 제어에 관한 연구)

  • 최경현;최재원;김대현;도양회;이석희;김성종;김동수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1295-1298
    • /
    • 2004
  • Selective Laser Sintering(SLS) method is one of Rapid Prototyping(RP) technologies. It is used to fabricate desirable part to sinter powder and stack the fabricated layer. To develop this SLS machine, it needs effective scanning path and the development of scanning device. This paper shows how to make fast scanning path with respect to scan spacing, laser beam size and scanning direction from 2-dimensional sliced file generated in commercial CAD/CAM software. Also, we develop the scanning device and its control algorithm to precisely follow the generated scanning path. Scanning path affects precision and total machining time of the final fabricated part. Sintering occurs using infrared laser which has high thermal energy. As a result, shrinkage and curling of the fabricated part occurs according to thermal distribution. Therefore, fast scanning path generation is needed to eliminate the factors of quality deterioration. It highly affects machining efficiency and prevents shrinkage and curling by relatively lessening the thermal distribution of the surface of sintering layer. To generate this fast scanning path, adaptive path generation is needed with respect to the shape of each layer, and not simply x, y scanning, but the scanning of arbitrary direction must be enabled. This paper addresses path generation method to focus on fast scanning, and development of scanning system and control algorithm to precisely follow generated path.

  • PDF

Preparation and Sintering Characteristics of Ce0.8Gd0.2O1.9 Powder by Ammonium Carbonate Co-precipitation (탄산암모늄 공침을 이용한 Ce0.8Gd0.2O1.9 분말의 합성 및 소결특성)

  • Yoo, Young-Chang;Chung, Byung-Joo;Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.118-123
    • /
    • 2012
  • GDC20($Ce_{0.8}Gd_{0.2}O_{1.9}$) powder was synthesized from Ce and Gd nitrate solutions using ammonium carbonate($(NH_4)_2CO_3$) as a precipitant. Attrition-milling of the powder, which had been calcined at $700^{\circ}C$ for 4 h, decreased an average particle size of 2.2 ${\mu}m$ to 0.5 ${\mu}m$. The milled powder consisted of nano-sized spherical primary particles. Due to the excellent sinterability of the powder, sintering of the powder compacts for 4 h showed relative densities of 80% at 1000 $^{\circ}C$ and 96.5% at $1200^{\circ}C$, respectively. Densification was found to almost complete at $1300^{\circ}C$, resulting in a dense and homogeneous microstructure with a relative density of 99.5%. The grains of ~0.2 ${\mu}m$ in size at $1200^{\circ}C$ grew to ~1 ${\mu}m$ in size at $1300^{\circ}C$ as a result of a rapid grain growth.

A Study on Characteristics of Al-Pb Strips and Its Sintering Behavior (Al-Pb계 합금분말의 성형 및 소결 특성에 관한 연구)

  • Moon, Jong-Tai;Lee, Young-Kun;Lee, Yong-Ho;Cho, Sung-Suk
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.435-443
    • /
    • 1990
  • By using the centrifugal atomization, which is one of the rapid solidification processes, Al-5,10wt%Pb alloys which are monotectic alloys were melted at 150K over two liquid phase line in the phase diagram. The melted alloy was poured on the rotating disk, being made into atomized powders, and then the solidified microstructure and morphology of the powder were investigated. This study converted the produced powders into strips by strained powder rolling. According to sintering temperature, the microstructure and hardness were investigated. The solidified structure of the powders were almost cellular dendritic structure. Pb particles ($2.0-3.0{\mu}m$) were fairl distributed in the Al matrix. Powder shapes were irregular. Rolling property and the compacting was good, respectively, because of increasing mechanical interlocking and surface area in the small size powders. With increasing temperature, the boundarys of powders were in porous form due to the diffusion. Pb particles which were surrounding the pores were inverse-segregated at the surface of the powders. With increasing of sintering temperature, the hardness of the powders and the strips decreased. In particular rolling-strip, the hardness abruptly decreased due to the release of work-hardening.

  • PDF