DOI QR코드

DOI QR Code

Fabrication of Calcium Phosphate Scaffolds Using Projection-based Microstereolithography and Their Effects on Osteogenesis

투영기반 마이크로 광조형 기술을 이용한 3 차원 인산칼슘 인공지지체 제작 및 골 분화 영향

  • Seol, Young-Joon (Dept. of Mechanical Engineering, Center for Rapid Prototyping Based 3D Tissue/Organ Printing, POSTECH) ;
  • Park, Ju-Young (Dept. of Mechanical Engineering, Center for Rapid Prototyping Based 3D Tissue/Organ Printing, POSTECH) ;
  • Cho, Dong-Woo (Dept. of Mechanical Engineering, Center for Rapid Prototyping Based 3D Tissue/Organ Printing, POSTECH)
  • 설영준 (포항공과대학교 기계공학과 쾌속조형기반장기프린팅연구단) ;
  • 박주영 (포항공과대학교 기계공학과 쾌속조형기반장기프린팅연구단) ;
  • 조동우 (포항공과대학교 기계공학과 쾌속조형기반장기프린팅연구단)
  • Received : 2011.06.13
  • Accepted : 2011.08.13
  • Published : 2011.11.01

Abstract

Calcium phosphates are very interesting materials for use as scaffolds for bone tissue engineering. These materials include hydroxyapatite (HA) and tricalcium phosphate (TCP), which are inorganic components of human bone tissue and are both biocompatible and osteoconductive. Although these materials have excellent properties for use as bone scaffolds, many researchers have used these materials as additives to synthetic polymer scaffolds for bone tissue regeneration, because they are difficult to manufacture three-dimensional (3D) scaffolds. In this study, we fabricated 3D calcium phosphate scaffolds with the desired inner and outer architectures using solid freeform fabrication technology. To fabricate the scaffold, the sintering behavior was evaluated for various sintering temperatures and slurry concentrations. After the fabrication of the calcium phosphate scaffolds, in-vitro cell proliferation and osteogenic differentiation tests were carried out.

인산칼슘 재료는 하이드록시 아파타이트(Hydroxyapatite)와 트리칼슘 포스페이트(Tricalcium-phosphate)를 포함하고 있으며, 인체 골 조직의 무기성분으로 세포 독성이 없고 생체 적합한 성질을 가지고 골 전도성이 있다. 또한 두 재료가 혼합되어 있는 이상 인산칼슘(Biphasic calcium phosphate) 재료는 골 유도성이 있다고 알려져 있다. 이러한 골 조직 재생에 많은 장점을 가지고 있는 인산칼슘 재료는 파우더 타입으로, 3 차원 자유형상의 인공지지체를 제작하는 데 어려움이 있어 고분자 재료에 첨가하여 사용되었다. 본 연구에서는 자유형상 제작 기술을 이용하여 원하는 내/외부 형상을 가지는 3 차원 인산칼슘 인공지지체를 제작하고, 골 조직 재생용 인공지지체로의 사용이 적합한지를 확인하기 위해 MC3T3-E1 를 이용한 세포 증식, 골 조직 분화 실험을 수행하였다.

Keywords

References

  1. Hutmacher, D. W., 2000, "Scaffolds in Tissue Engineering Bone and Cartilage," Biomaterials, Vol. 21, pp. 2529-2543. https://doi.org/10.1016/S0142-9612(00)00121-6
  2. Lan, P. X., J Lee,. W., Seol, Y.-J. and Cho, D.-W., 2009, "Development of 3D PPF/DEF Scaffolds Using Micro-Stereolithography and Surface Modification," J Mater Sci: Mater Med, Vol. 20, pp. 271-279.
  3. Ifkovits, J. L. and Burdick, J. A., 2007, "Review: Photopolymerizable Biomaterials for Tissue Engineering Applications," Tissue Engineering, Vol. 13, No. 10, pp. 2369-2385. https://doi.org/10.1089/ten.2007.0093
  4. Schieker, M., Seitz, H., Drosse, I., Seitz, S. and Mutschler, W., 2006, "Biomaterials as Scaffold for Bone Tissue Engineering," European Journal of Trauma, Vol. 32, No. 2, pp. 114-124. https://doi.org/10.1007/s00068-006-6047-8
  5. Lu, J., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaitre, J. and Proust, J.-P., 2002, "The Biodegradation Mechanism of Calcium Phosphate Biomaterials in Bone," J Biomed Mater Res, Vol. 63, No. 4, pp. 408-412. https://doi.org/10.1002/jbm.10259
  6. Jung, G.-Y., Park, Y.-J. and J Han,.-S., 2010, "Effects of HA Released Calcium Ion on Osteoblast Differentiation," J Mater Sci: Mater Med, Vol. 21, pp. 1649-1654. https://doi.org/10.1007/s10856-010-4011-y
  7. Zayzafoon, M., 2006, "Calcium/Calmodulin Signaling Controls Osteoblast Growth and Differentiation," Journal of Cellular Biochemistry, Vol. 97, pp. 56-70. https://doi.org/10.1002/jcb.20675
  8. Kandel, R.A., Grynpas, M., Pilliar, R., Lee, J., Wang, J., Waldman, S., Zalzal, P., Hurtig, M. and CIHRBioengineering of Skeletal Tissue Team, and Han, J.- S., 2006, "Repair of Osteochondral Defects with Biphasic Cartilage-Calcium Polyphosphate Constructs in a Sheep Model," Biomaterials, Vol. 27, pp. 4120-4131. https://doi.org/10.1016/j.biomaterials.2006.03.005
  9. Barralet, J.E., Grover, L., Gaunt, T., Wright, A.J. and Gibson, I.R., 2002, "Preparation of Macroporous Calcium Phosphate Cement Tissue Engineering Scaffold," Biomaterials, Vol. 23, pp. 3063-3072. https://doi.org/10.1016/S0142-9612(01)00401-X
  10. Deville, S., Saiz, E. and Tomsia, A. P., 2006, "Freeze Casting of Hydroxyapatite Scaffolds for Bone Tissue Engineering," Biomaterials, Vol. 27, pp. 5480-5489. https://doi.org/10.1016/j.biomaterials.2006.06.028
  11. Kim, S.-S., Park, M. S., Jeon, O., Choi, C. Y. and Kim, B.-S., 2006, "Poly(lactide-co-glycolide)/ Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering," Biomaterials, Vol. 27, pp. 1399-1409. https://doi.org/10.1016/j.biomaterials.2005.08.016
  12. Rezwan, K., Chen, Q.Z., Blaker, J.J. and Boccaccini, A. R., 2006, "Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering," Biomaterials, Vol. 27, pp. 3413-3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
  13. Zhang, Y. and Zhang, M., 2000, "Synthesis and Characterization of Macroporous Chitosan/Calcium Phosphate Composite Scaffolds for Tissue Engineering," Journal of Biomedical Materials Research, Vol. 55, pp. 304-312.

Cited by

  1. Design of multi-scaffold fabrication system for various 3D scaffolds vol.27, pp.10, 2013, https://doi.org/10.1007/s12206-013-0810-7
  2. Fabrication of Blended PCL/β-TCP Scaffolds by Mixture Ratio of β-TCP using Polymer Deposition System vol.31, pp.9, 2014, https://doi.org/10.7736/KSPE.2014.31.9.791
  3. Characteristic Analysis and Fabrication of Bioceramic Scaffold using Mixing Ratios of TCP/HA by Fused Deposition Modeling vol.38, pp.11, 2014, https://doi.org/10.3795/KSME-A.2014.38.11.1273