• 제목/요약/키워드: rapid hydrolysis

검색결과 105건 처리시간 0.026초

가수분해 산물 분포를 이용한 급속혼화강도가 화학적 인 제거 효율에 미치는 영향의 규명 (Evaluation of effect of rapid mixing intensity on chemical phosphorus removal using Al hydrolysis speciation)

  • 김승현;윤동수;문병현
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.367-373
    • /
    • 2011
  • Mechanism of rapid mixing effect on chemical phosphorus removal is evaluated in this study. Assuming that chemical phosphorus removal is unaffected by mixing time, only rapid mixing intensity is evaluated. In order to find out the mechanism, it is hypothesized that rapid mixing affects the Al hydrolysis speciation, and that formation of more monomeric species ($Al^a$) results in better removal of phosphorus. According to a ferron assay, more $Al^a$ formed at higher mixing intensity than at lower intensity. Subsequent experiments revealed that better phosphorus removal was obtained at higher intensity than at lower intensity, in terms of the molar ratio of $Al_{added}/P_{removed}$. The proposed hypothesis was proved in this study. Chemical phosphorus removal is affected by rapid mixing intensity due to its effect on the Al hydrolysis speciation.

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

A Study on the Rapid Hydrolysis of Fish Using Proteolytic Bacteria Isolated from Anchovy Jeotkal

  • Kim Sang-Ho;Kim Young-Min;Seong Hee-Kyung;Choi Su-Il;Kim Seon-Bong;Han Bong-Ho
    • Fisheries and Aquatic Sciences
    • /
    • 제2권1호
    • /
    • pp.36-43
    • /
    • 1999
  • A study on the hydrolysis of anchovy using proteolytic bacteria isolated from anchovy jeotkal (a salt-fermented fish) was carried out to develop a rapid process of liquefied anchovy jeotkal. Five kinds of proteolytic bacteria, such as Staphylococcus sp.-l, Photobacterium sp., Volcaniella sp., Staphylococcus sp.-2 and Bacillus sp., were isolated from the anchovy jeotka1 that fermented with $20\%$ NaCl at room temperature for 2 months. Those grew well at $40^{\circ}C$, pH 7.0 on TPY broth with $2.0\%$ NaCl. The optimal hydrolysis temperature, pH, time and proteolytic bacteria densities for hydrolysis of minced anchovy were$40^{\circ}C$, 7.0, 6 hours and $1.8\times10^8$ cells/g raw anchovy, respectively.

  • PDF

전자렌지 반응을 이용한 인삼 사포닌의 신속한 가수분해법 (Rapid Hydrolysis of Ginseng Saponin by Microwave Oven Reaction)

  • Park, Man-Ki;Park, Jeong-Hill;Kang, Jong-Seong;Lee, Mi-Young;Park, Young-In;Yu, Su-Jeong;Han, Byung-Hoon
    • Journal of Ginseng Research
    • /
    • 제17권1호
    • /
    • pp.35-38
    • /
    • 1993
  • A new and rapid method for the hydrolysis of ginsenosides to panaxadiol or panaxatriol was developed. It is based on the microwave oven reaction, which is high temperature and high-pressure reaction. The optimal hydrolysis time using 5% $H_2SO_4$ solution was found at 10 min PTFE reaction vessel in microwave oven, which is more than 30 times faster than the conventional hydrolysis method.

  • PDF

알콕사이드의 가수분해법에 의한 단분산 지르코니아 분체의 합성 (Synthesis of Monodispersed Zirconia Powder by Hydrolysis of Zirconium Alkoxides)

  • 이전;조동수
    • 한국세라믹학회지
    • /
    • 제28권2호
    • /
    • pp.167-175
    • /
    • 1991
  • In synthesizing hydrated zirconia powder by hydrolysis of Zr-alkoxides using ethanol as mutual solvent, three experimental parameters, namely, concentration of alkoxides and hydrolysis water and addition rate of hydrolysis water were varied systematically. Spherical, monodispersed, nonagglomerated and submicrometer sized powders were prepared at 0.3 M of Zr(n-OPr)4 and 0.05M of Zr(n-OBu)4 with wide ranges of hydrolysis water conditions i.e. 0.5-2.0M concentration and 1-20ml/min addition rate. During the hydrolsis, careful attention have to be paid to maintain homogeneous reaction by controlling the agitation of the reactant and the addition of the hydrolysis water. For more improved condition of monodispersity it was found that the key point is to shorten the self-nucleation time within several seconds as rapid as possible. In both alkoxides system, with higher concentration of alkoxide and hydrolysis water and with slow addition rate of hydrolysis water, hydrated zirconia powders synthesized showed tendency to fall in worse powder conditions.

  • PDF

배추 겉잎을 이용한 김치쥬스 제조시 효소분해, 당, 소금농도가 발효에 미치는 영향 (Effects of Enzymatic Hydrolysis and Concentrations of Sugar and Salt on Kimchi Juice Fermentation of Outer Leaves of Chinese Cabbage)

  • 전윤기;윤석권;김우정
    • 한국식품영양과학회지
    • /
    • 제26권5호
    • /
    • pp.788-793
    • /
    • 1997
  • Addition of sugar, enzymatic hydrolysis and salt concentration were evaluated for their effects on the changes in some characteristics of Kimchi juice during fermentation. The Kimchi juice was prepared by brining and grinding of outer layer leaves of chinese cabbage, one of the wastes products of Kimchi processing, followed by fermentation proceeded significantly faster. Addition of sucrose or glucose at the ange of 0.5~2.0 % also improved the fermentation but the concentration effect was little. Enzymatic hydrolysis on the brined cabbage prior to fermentation with a commercial polysaccharides hydrolases also increased the fermentation. However the solid concentration in Kimchi juice was rather decreased by higher concentration of NaCl and enzymatic hydrolysis. The reducing sugar content showed a rapid decrease from 24 hours of fermentation and the effect of enzymatic hydrolysis was little.

  • PDF

Enzymatic Hydrolysis of Pretreated Chitin by Aspergillus carneus Chitinase

  • Mohamed, Abdel-Naby;Kwon, Dae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권3호
    • /
    • pp.197-203
    • /
    • 1992
  • Studies of the pretreatment of chitin and its subsequent hydrolysis by Aspergillus carneus chitinase are reported. Ball milling was found to be the most effective way among the pretreatment methods tested. Data are presented describing the effect of enzyme and substrate concentrations on the rate and extent of the hydrolysis process. It was found that the successive addition of enzyme improved the saccharification yield. Significant product inhibition of the chitinase was observed when N-acetylglucosamine concentration was 3.6% or higher. Adsorption of enzymes to the substrate occurred during a 24 hr hydrolysis period. An initial rapid and extensive adsorption occurred, followed by gradual desorption which increased during the time of reaction. Intermediate removal of the hydrolyzate and continuation of the hydrolysis by adsorbed enzyme on the residual chitin was also investigated. A total of 75.4 g/l reducing sugars, corresponding to 69.2% saccharificaton yield (as N-acetylglucosamine) was obtained. In addition an increase in the amount of recoverable enzymes was observed under these conditions. Evidence presented here suggests that the technique, whereby the free enzymes in the recovered hydrolyzate are re-adsorbed onto the new substrate, may provide a means of recirculating the dissolved enzymes.

  • PDF

Single-stranded DNA Enhances the Rate of Product Release During Nucleotide Hydrolysis Reaction by T7 DNA Helicase

  • Kim, Dong-Eun;Jeong, Yong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권10호
    • /
    • pp.1618-1622
    • /
    • 2006
  • Bacteriophage T7 gp4A' is a ring-shaped hexameric DNA helicase that catalyzes duplex DNA unwinding using dTTP hydrolysis as an energy source. To investigate the effect of single-stranded DNA (ssDNA) on the kinetic pathway of dTTP hydrolysis by the T7 DNA helicase complexed with ssDNA, we have first determined optimal concentration of long circular M13 single-stranded DNA and pre-incubation time in the absence of $Mg^{2+}$ which is necessary for the helicase-ssDNA complex formation. Steady state dTTP hydrolysis in the absence of $Mg^{2+}$ by the helicase-ssDNA complex provided $k_{cat}$ of $8.5\;{\times}\;10^{-3}\;sec^{-1}$. Pre-steady state kinetics of the dTTP hydrolysis by the pre-assembled hexameric helicase was monitored by using the rapid chemical quench-flow technique both in the presence and absence of M13 ssDNA. Pre-steady state dTTP hydrolysis showed distinct burst kinetics in both cases, indicating that product release step is slower than dTTP hydrolysis step. Pre-steady state burst rates were similar both in the presence and absence of ssDNA, while steady state dTTP hydrolysis rate in the presence of ssDNA was much faster than in the absence of ssDNA. These results suggest that single-stranded DNA stimulates dTTP hydrolysis reaction by T7 helicase by enhancing the rate of product release step.

응집공정에서 발생하는 알루미늄 가수분해종 분포특성 (Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process)

  • 송유경;정철우;황보봉형;손인식
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.547-554
    • /
    • 2006
  • 응집공정에서 교반조건과 응집제 주입농도에 따른 알루미늄 가수분해종 변화에 대한 실험결과 다음과 같은 결론을 얻을 수가 있었다. 알루미늄 표준용액을 이용하여 모노머성 알루미늄과 페론 반응을 살펴본 결과 반응초기에 급격한 반응률을 보이며 반응시간 3분 정도에 평형에 도달함을 알 수 있었다. 순수의 경우 교반시간에 따른 영향은 거의 나타나지 않고 있으며 거의 일정한 반응률을 보이고 있었다. 상수원수의 경우 입자상 물질과 유기물의 존재함에 따라 응집제 주입시 수중에서 형성되는 알루미늄 가수분해종이 입자상 물질 및 유기물과 우선적으로 반응하기 때문에 형성되는 알루미늄 가수분해 종에 대한 반응률이 교반시간에 따라 다르게 나타났다. 응집제 주입량이 증가할수록 페론과 반응율이 빠르게 일어나나 일정한 시간이 경과한 후에 반응율을 살펴보면 응집제 주입량이 증가할수록 반응이 느리게 나타났다. 순수의 경우 교반시간에 따른 Ka 값은 교반시간이 증가할수록 Ka 값은 감소함을 알 수 있으며 응집제 주입량의 영향은 크게 나타나지 않고 있다. 그러나 Kb의 경우 응집제 주입량이 증가할수록 반응속도 상수값이 낮아지는 경향을 보이고 있으며, 마찬가지로 교반시간이 증가할수록 Kb 값은 감소함을 알 수 있다. 상수원수를 사용한 경우 순수와 마찬가지로 교반시간에 따른 Ka, Kb값 은 교반시간이 증가할수록 감소하였다. 그러나 응집제 주입량이 증가할수록 Ka 값은 감소하였다.

C. I. Disperse Blue 79의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of C. I. Disperse Blue 79)

  • 박건용;박창혁;박병기
    • 한국염색가공학회지
    • /
    • 제13권5호
    • /
    • pp.24-24
    • /
    • 2001
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Blue 79(B-79) which is 4-N, N-diacetoxyethyl-2-acylamino-5-ethoxy -2′-bromo-4′,6′-dinitroazobenzene were investigated. The color strength of B-79 in acetone/water solutions of various NaOH concentrations decreased continuously. The hydrolysis rate of B-79 increased with increasing alkali concentration and appeared following first order reaction. The observed rate constants for various concentrations of B-79 showed similar values, and B-79 was hydrolyzed by first order reaction for dye concentration. Therefore, it was confirmed that the overall reaction follow second order kinetics and proceed via S/sub n/2 reaction. From the study on kinetics and spectrometric analysis, it was proposed that the rate determining step of the hydrolysis reaction of B-79 is the nucleophilic substitution reaction - that is the reaction of the rapid attack of $OH^{-}$ on the carbon atom, which is in acceptor ring, adjacent to azo group to break the C-N bond. And it was also found that the final hydrolysis products of B-79 include both the acceptor ring in the form of sodium salt and the donor ring possessing 4-N,N-dihydroxyethyl group converted from 4-N,N-diacetoxyethyl group.