• Title/Summary/Keyword: ranks of elliptic curves

Search Result 2, Processing Time 0.017 seconds

SOME ARITHMETIC PROPERTIES ON NONSTANDARD NUMBER FIELDS

  • Lee, Junguk
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1345-1356
    • /
    • 2017
  • For a given number field K, we show that the ranks of elliptic curves over K are uniformly finitely bounded if and only if the weak Mordell-Weil property holds in all (some) ultrapowers $^*K$ of K. We introduce the nonstandard weak Mordell-Weil property for $^*K$ considering each Mordell-Weil group as $^*{\mathbb{Z}}$-module, where $^*{\mathbb{Z}}$ is an ultrapower of ${\mathbb{Z}}$, and we show that the nonstandard weak Mordell-Weil property is equivalent to the weak Mordell-Weil property in $^*K$. In a saturated nonstandard number field, there is a nonstandard ring of integers $^*{\mathbb{Z}}$, which is definable. We can consider definable abelian groups as $^*{\mathbb{Z}}$-modules so that the nonstandard weak Mordell-Weil property is well-defined, and we conclude that the nonstandard weak Mordell-Weil property and the weak Mordell-Weil property are equivalent. We have valuations induced from prime numbers in nonstandard rational number fields, and using these valuations, we identify two nonstandard rational numbers.

The Diophantine Equation ax6 + by3 + cz2 = 0 in Gaussian Integers

  • IZADI, FARZALI;KHOSHNAM, FOAD
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.587-595
    • /
    • 2015
  • In this article, we will examine the Diophantine equation $ax^6+by^3+cz^2=0$, for arbitrary rational integers a, b, and c in Gaussian integers and find all the solutions of this equation for many different values of a, b, and c. Moreover, two equations of the type $x^6{\pm}iy^3+z^2=0$, and $x^6+y^3{\pm}wz^2=0$ are also discussed, where i is the imaginary unit and w is a third root of unity.