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Abstract. In this article, we will examine the Diophantine equation ax6 + by3 + cz2 = 0,

for arbitrary rational integers a, b, and c in Gaussian integers and find all the solutions of

this equation for many different values of a, b, and c. Moreover, two equations of the type

x6 ± iy3 + z2 = 0, and x6 + y3 ± ωz2 = 0 are also discussed, where i is the imaginary unit

and ω is a third root of unity.

1. Introduction

The fundamental problem when studying a given diophantine equation is
whether a solution exists, and, in the case of existence, how many solutions are
there and how one can find them.

The diophantine equations of the type axp + byq + czr = 0 are called super-
Fermat equations which is one of the most well-known diophantine equations. Sim-
ple heuristic reasoning shows that if 1/p+1/q+1/r < 1, we expect only a finite num-
ber of solutions up to a reasonable notion of equivalence, and if 1/p+1/q+1/r > 1,
we expect infinitely many solutions. The intermediate case 1/p + 1/q + 1/r = 1
reduces to the study of elliptic curves, and the existence or not of solutions essen-
tially depends on the rank of the curve and its torsion subgroup. lt is clear that up
to permutation of p, q, and r we have (p, q, r) = (3, 3, 3), (4, 4, 2), or (6, 3, 2) (see
section 6.5 of [1]).

The cases (p, q, r) = (3, 3, 3) and (4, 4, 2) have studied in Gaussian integers re-
cently.
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For the case of (p, q, r) = (4, 4, 2), F. Najman [6] showed that The equation
x4 − y4 = iz2 has only trivial solutions in Gaussian integers and the only non-
trivial solutions satisfying gcd(x, y, z) = 1 in Gaussian integers of the equation
x4 + y4 = iz2 are (x, y, z), where x, y ∈ {±i,±1} and z = ±i(1 + i).
Also for the case of (p, q, r) = (3, 3, 3), E. Lampakis [3], showed that in the ring
of Gaussian integers Z[i], the solutions of the Diophantine equation x3 + y3 = z3

are trivial, namely, xyz = 0. It is thus natural to study the last case here, i.e.,
ax6 + by3 + cz2 = 0, where a, b, and c are arbitrary rational integers.

For an elliptic curve E over a number field K, it is well known, by the Mordell-
Weil theorem, that the set E(K) of K-rational points on E is a finitely generated
abelian group. The group E(K) is isomorphic to T ⊕Zr, where r is a non-negative
integer and T is the torsion subgroup. We will be interested in the case when
K = Q(i). We will work only with elliptic curves with rational coefficients and by a
recent result of Najman (see [7]), if an elliptic curve has rational coefficients, then
the torsion of the elliptic curve over Q(i) is either cyclic group of order m, where
1 ≤ m ≤ 10 and m = 12, or of the form Z2 ⊕ Z2m, where 1 ≤ m ≤ 4 , or Z4 ⊕ Z4.

In order to determine the torsion subgroup of E(Q(i)), we use the extended
Lutz-Nagell theorem [9], which is a generalization of the Lutz-Nagell theorem
fromE(Q) to E(Q(i)). Therefore throughout this article, the following extension of
the Lutz-Nagell theorem is used to compute the torsion groups of elliptic curves.

Theorem 1.1. Let E : y2 = x3 + Ax + B
with A,B ∈ Z(i). If a point (x, y) ∈ E(Q(i)) has finite order, then

1. Both x, y ∈ Z[i], and

2. Either y = 0 or y2|4A3 + 27B2.

It is well-known (see e.g. [10]) that if an elliptic curve E is defined over Q, then
the rank of E over Q(i) is given by

rank(E(Q(i))) = rank(E(Q)) + rank(E−1(Q))

where E−1 is the (−1)-twist of E over Q. We use it during the proofs of this article.

2. New Results

We star off with some definitions.

Definition 2.1.(Trivial Solution) The solution (x, y, z) of the equation ax6 + by3 +
cz2 = 0 is called trivial if xyz = 0.

Definition 2.2.(Twisted Projective Equivalence) We will say that two nonzero
Gaussian rational solutions (x, y, z) and (x′, y′, z′) of the equation ax6+by3+cz2 = 0
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are the same under twisted projective equivalence if there exists λ ∈ Q∗(i) such that
x′ = λx, y′ = λ2y, z′ = λ3z.

We note that there is a one-to-one correspondence between the nonzero Gaussian
rational solutions of ax6 + by3 + cz2 = 0 up to twisted projective equivalence and
the nonzero points of

E : Y 2Z = X3 − ab2c3Z3,

where the point (0,−bc, b2c) corresponds to the zero point O on E. More precisely,
we have the following mutually inverse correspondences

(x, y, z) 7→ (X,Y, Z) = (−bcxy, bc2z, x3).

(X, Y, Z) 7→ (x, y, z) = (bcZ,−bcXZ, b2cY Z2).

(2.1)

It follows that our equation has a solution with nonzero x if and only if either
the curve E has nonzero rank, in which case it has infinitely many inequivalent
solutions, or if E has nontrivial torsion.

To see this, we divide the equation ax6+by3+cz2 = 0 by x6 and do the variable
change r = −y/x2, s = z/x3, to get cs2 = br3−a. Multiplying this equation by b2c3,
we obtain b2c4s2 = b3c3r3−ab2c3. Again with a variable change X = bcr, Y = bc2s,
we get the equation defining the required elliptic curve E : Y 2 = X3− ab2c3, which
is the affine model of the above projective curve. Now we are ready to state our
main results.

Theorem 2.3. For the diophantine equation ax6 + by3 + cz2 = 0, where a, b, and
c are rational integers, the followings hold .

1. If −ab2c3 = m6 is a sixth power, the only nontrivial solutions in Gaussian
integers of the equation ax6 + by3 + cz2 = 0 under twisted projective equiva-
lence are (bc,−2bcm2,±3b2cm3).

2. If ab2c3 = m6 is a sixth power, the only nontrivial solutions in Gaussian in-
tegers of the equation ax6 +by3 +cz2 = 0 under twisted projective equivalence
are (bc, 2bcm2,±3ib2cm3).

Proof. (1) Suppose (x, y, z) be a nontrivial solution. If −ab2c3 = m6 is a sixth
power with the correspondent relation (2.1), we obtain the equation defining the
elliptic curve

E : Y 2 = X3 + m6,

with X, Y ∈ Q(i). This curve is isomorphic to

E′ : Y ′2 = X ′3 + 1,

with X ′, Y ′ ∈ Q(i), where X ′ = X/m2 and Y ′ = Y/m3. Therefore to obtain the
torsion subgroup of E over Q(i) we look for the torsion subgroup of E′ over Q(i).
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From the extended Lutz-Nagell theorem for E′, we have 4A3 + 27B2 = 27. Then
for any torsion point ∞ 6= (X ′, Y ′) ∈ E′(Q(i)) the possibilities for Y ′ are

0, ±1, ±i, ±3, ±3i.

Substituting each Y ′ into the equation, we obtain the ”possible” torsion points as

(−1, 0), (0,±1), (2,±3).

Clearly (−1, 0) has order 2. Also it can be checked that each of the points (0,±1)
has order 3, and each of the points (2,±3) has order 6. Thus the torsion subgroup
of E′(Q(i)) in this case is

{∞, (−1, 0), (0,±1), (2,±3)},

which is indeed a cyclic group of order 6. Since E′(Q(i))tors = Z/6Z, therefore
E(Q(i))tors is Z/6Z with the torsion points

{∞, (−m2, 0), (0,±m3), (2m2,±3m3)}.

Obviously the points (−m2, 0) and (0,±m3) lead to trivial solutions. But
the point (2m2,±3m3), by the correspondences (2.1) leads us to the solu-
tions (bc,−2bcm2,±3b2cm3). Now the only thing that we need to prove that
rank(E(Q(i))) = 0.
It is clear that (−1)-twist of E′ over Q is

E′
−1 : Y 2 = X3 − 1.

Using the Mwrank program [2], we see that the rank of the curves E′ and E′
−1

are 0. These imply that the rank of the curves E and E−1 are also 0. Therefore
rank(E(Q(i))) = 0.

(2) The proof for this case is similar. 2

Corollary 2.4. For some specific values of the parameters, the solutions in the
Gaussian integers of the equation ax6 + by3 + cz2 = 0, are:

1. The only nontrivial solutions of the equation x6 + y3 = z2 under twisted pro-
jective equivalence are (−1, 2,±3).

2. The only nontrivial solutions of the equation x6 + y3 = −z2 under twisted
projective equivalence are (1, 2,±3i).

3. The only nontrivial solutions of the equation x6± iy3 + z2 = 0, under twisted
projective equivalence are (±i,±2i,±3).
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4. The only nontrivial solutions of the equation x6 + y3 = −ωz2 under twisted
projective equivalence are (ω, 2ω,±3iω).

5. The only nontrivial solutions of the equation x6 + y3 = ωz2 under twisted
projective equivalence are (−ω, 2ω,±3ω).

Theorem 2.5. For the diophantine equation ax6 + by3 + cz2 = 0, where a, b, and
c are rational integers, the followings hold.

1. If −ab2c3/432 = m6 is a sixth power, the only nontrivial solutions in Gaus-
sian integers of the equation ax6 + by3 + cz2 = 0 under twisted projective
equivalence are (bc, 12bcm2,±36ib2cm3).

2. If ab2c3/432 = m6 is a sixth power, the only nontrivial solutions in Gaussian
integers of the equation ax6 + by3 + cz2 = 0 under twisted projective equiva-
lence are (bc,−12bcm2,±36b2cm3).

Proof. (1) Suppose (x, y, z) be a nontrivial solution. If −ab2c3/432 = m6 is a sixth
power, with the correspondent relation (2.1), we obtain the equation defining the
elliptic curve

E : Y 2 = X3 + 432m6,

with X, Y ∈ Q(i). This curve is isomorphic to

E′ : Y ′2 = X ′3 + 432,

with X ′, Y ′ ∈ Q(i), where X ′ = X/m2 and Y ′ = Y/m3. Therefore to obtain the
torsion subgroup of E over Q(i), we look for the torsion subgroup of E′ over Q(i).
From the extended Lutz-Nagell theorem for E′, we have 4A3 + 27B2 = 5038848.
Then for any torsion point ∞ 6= (X ′, Y ′) ∈ E′(Q(i)), it can be checked that Y ′

must be one of the followings:

0, ,±ε, ,±εi, ,±ε1(i + 1), ,±ε1(i− 1),

where ε runs over all elements of the set

Ω ={1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54,

72, 81, 108, 144, 162, 216, 324, 432, 648, 1296}.
(2.2)

and ε1 runs over all the elements of the set Ω mines the numbers {16, 48, 144, 432, 1296}.
By solving directly for x ∈ Z (with some help from the Maple software), we obtain
all the possible torsion points as

(−12,±36i).
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Each of these points has order 3. Thus the torsion subgroup of E′(Q(i)) in this case
is

{∞, (−12,±36i)}.
Since E′(Q(i))tors = Z/3Z, then E(Q(i))tors is Z/3Z with the torsion points

{∞, (−12m2,±36m3i)}.
The point (−12m2,±36m3i), by the correspondences (2.1) lead us to the solu-
tions (bc, 12bcm2,±36b2cim3). Now the only thing that we need to prove that
rank(E(Q(i))) = 0.
It is clear that (−1)-twist of E′ over Q is

E′
−1 : Y 2 = X3 − 432.

Using the Mwrank program [2], we see that the rank of curves E′ and E′
−1 are 0.

These imply that the rank of curves E and E−1 are also 0. Therefore
rank(E(Q(i))) = 0.

(2) The proof for this case is similar. 2

Corollary 2.6. For some specific values of the parameters, the solutions in the
Gaussian integers of the equation ax6 + by3 + cz2 = 0, are:

1. The only nontrivial solutions of the equation −4x6 + 2y3 + 3z2 = 0 under
twisted projective equivalence are (6, 72,±2i× 63).

2. The only nontrivial solutions of the equation 3x6+6y3+2z2 = 0 under twisted
projective equivalence are (12,−144,±2× 64).

3. Infinitely many Solution

From (2.1) it is obvious that the equation ax6 + by3 + cz2 = 0 has infinitely
many solutions up to twisted projective equivalence if and only if E has nonzero
rank. On the other hand, if the rank is zero then there is either finitely many
solutions up to twisted projective equivalence or only trivial solutions. In this sec-
tion, we will show that unlike the above cases the results can be different for the
different values of the rational integers a, b, and c. We distinguish the following cases.

Case 1. Let ±ab2c3 be square free, then we should have b = c = 1, and E : Y 2 =
x3 − a. For example for the values of a = 6, 3, 2, 26, and 56 + 16× 66 = 762121, the
corresponding elliptic curves all have trivial torsion subgroup but ranks 0, 1, 2, 3,
and ≥ 4 respectively, (see the table 1). It follows that the corresponding diophan-
tine equations have the trivial solution for the first and infinitely many solutions
for the others in Gaussian integers.
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Case 2. Let ±a/c = m2 be a square and not a sixth power, then the corre-
sponding elliptic curve is E : Y 2 = X3 ∓ d2, where d = bmc2. Let b = c = 1
and m = 4, then we get E : y2 = x3 − 16. It has rank 0 and torsion subgroup of
order 3. If b = c = 1 and m = 2, then we get E : y2 = x3 − 4. It has rank 1 and
torsion subgroup of order 3. For the other values of the parameters see the table
1. Again we see that the diophantine equation can have either finite or infinitely
many solutions in Gauusian integers.

case 3. Let −a/b = m3 be a cube and not a sixth power, then the corresponding
elliptic curve is Y 2 = X3 + d3, where d = bmc.
In this case, we see that for the values of d = 27, 8, 6, 30, the corresponding el-
liptic curves all have torsion subgroup of order 2 and ranks 0, 1, 1, 1, respectively.
Therefore the diophantine equation has finitely many solutions in the first case and
infinitely many solutions in the last three cases.

Table 1: Y 2 = X3 + AX + B

n [A,B] Torsion over Q(i) Torsion point Rank over Q Generation

1 [0, 2] trivial O 1 [-1:1:1]

2 [0,−2] trivial O 1 [3:5:1]

3 [0, 3] trivial O 1 [1:2:1]

4 [0,−3] trivial O 0 -

5 [0, 4] Z/3Z [0,-2] 0 -

6 [0,−4] Z/3Z [0,2i] 1 [2:2:1]

7 [0, 6] trivial O 0 -

8 [0,−6] trivial O 0 -

9 [0, 8] Z/2Z [-2,0] 1 [1:3:1]

10 [0,−8] Z/2Z [2,0] 0 -

11 [0, 9] Z/3Z [0,-3] 1 [-2:1:1]

12 [0,−9] Z/3Z [0,-3i] 0 -

13 [0, 16] Z/3Z [0,-4] 0 -

14 [0,−16] Z/3Z [0,-4i] 0 -

15 [0, 25] Z/3Z [0,5] 0 -

16 [0,−25] Z/3Z [0,5i] 1 [5:10:1]

Continued on next page
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Table 1 - continued from previous page

n [A,B] Torsion over Q(i) Torsion point Rank over Q Generation

17 [0, 26] trivial O 1 [-1:5:1]

18 [0,−26] trivial O 2 [3:1:1],[35:207:1]

19 [0, 27] Z/2Z [-3,0] 0 -

20 [0,−27] Z/2Z [3,0] 0 -

21 [0, 56 + 16× 66] trivial O 4 [-60:739:1],[-58:753:1], [-
25:864:1],[2:873:1]

22 [0,−(56 + 16× 66)] trivial O 0 ≤ r ≤ 4 -

23 [0, (3× 49)2] Z/3Z [0,−147] 1 [-12:141:1]

24 [0,−(3× 49)2] Z/3Z [0,−147i] 0 ≤ r ≤ 2 -

25 [0, (3× 5× 49)2] Z/3Z [0,−735] 0 -

26 [0,−(3× 5× 49)2] Z/3Z [0,−735i] 1 [ 1694915427
41781923

:
−339987829040

41781923
:1]

27 [0, 63] Z/2Z [−6, 0] 0 -

28 [0,−63] Z/2Z [6, 0] 1 [10:28:1]

29 [0, 303] Z/2Z [−30, 0] 0 -

30 [0,−303] Z/2Z [30, 0] 1 [2838:28756:27]
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