• Title/Summary/Keyword: rank-based

Search Result 1,184, Processing Time 0.025 seconds

The Role of Application Rank in the Extended Mobile Application Download

  • Bang, Youngsok;Lee, Dong-Joo
    • Asia pacific journal of information systems
    • /
    • v.25 no.3
    • /
    • pp.548-562
    • /
    • 2015
  • The growing popularity of mobile application has led to researchers and practitioners needing to understand users' mobile application download behaviors. Using large-scale transaction data obtained from a leading Korean telecommunications company, we empirically explore how application download rank, which appears to users when they decide to download a new application, affects their extended mobile application download. This terminology refers to downloading an additional application in the same category as those that they have already downloaded. We also consider IT characteristics, user characteristics, and application type that might be associated with the extended application download. The analysis generates the following result. Overall, a higher rank of a new application encourages the extended application download, but the linear relationship between the rank and the extended application download disappears when critical rank points are incorporated into the model. Further, no quadratic effect of rank is found in the extended application download. Based on the results, we suggest theoretical and managerial implications.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

A New Efficient Impulse Noise Detection based on Rank Estimation

  • Oh, Jin-Sung;Kim, You-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • In this paper, we present a new impulsive noise detection technique. To remove the impulse noise without detail loss, only corrupted pixels must be filtered. In order to identify the corrupted pixels, a new impulse detector based on rank and value estimations of the current pixel is proposed. Based on the rank and value estimations of the current pixel, the new proposed method provides excellent statistics for detecting an impulse noise while reducing the probability of detecting image details as impulses. The proposed detection is efficient and can be used with any noise removal filter. Simulation results show that the proposed method significantly outperforms many other well-known detection techniques in terms of image restoration and noise detection.

  • PDF

A Class of Rank Tests For Comparing Several Treatments with a Control

  • Park, Sang-Gue
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.52-62
    • /
    • 1991
  • Consider a class of rank tests for comparing several treatments with a control and discuss some members among the class. New rank test based on orthogonal contrasts is proposed and compared with other well known tests. The approximate powers of the proposed test are also presented through the simulation studies.

  • PDF

Nonparametric Tests in AB/BA/AA/BB Crossover Design

  • Nam, Jusun;Kim, Dongjae
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.607-618
    • /
    • 2002
  • Crossover design is often used in clinical trials about chronic diseases like hypertension, asthma and arthritis. In this paper, we suggest nonparametric approaches of Friedman-type rank test based on Bernard-van Elteren test and of aligned method keeping the information of blocks based on the AB/BA/AA/BB crossover design. The simulation results are presented to compare experimental error and power of several methods.

k-Sample Rank Procedures for Ordered Location-Scale Alternatives

  • Park, Hee-Moon
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.2
    • /
    • pp.166-176
    • /
    • 1994
  • Some rank score tests are proposed for testing the equality of all sampling distribution functions against ordered location-scale alternatives in k-sample problem. Under the null hypothesis and a contiguous sequence of ordered location-scale alternatives, the asymptotic properties of the proposed test statistics are investigated. Also, the asymptotic local powers are compared with each others. The results show that the proposed tests based on the Hettmansperger-Norton type statistic are more powerful than others for the general ordered location-scale alternatives. However, the Shiraishi's tests based on the sum of two Bartholomew's rank analogue statistics are robust.

  • PDF

Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving

  • Gao, Rui;Cheng, Deqiang;Yao, Jie;Chen, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3745-3761
    • /
    • 2020
  • Low-rank representation methods already achieve many applications in the image reconstruction. However, for high-gradient image patches with rich texture details and strong edge information, it is difficult to find sufficient similar patches. Existing low-rank representation methods usually destroy image critical details and fail to preserve edge structure. In order to promote the performance, a new representation-based image super-resolution reconstruction method is proposed, which combines gradient domain guided image filter with the structure-constrained low-rank representation so as to enhance image details as well as reveal the intrinsic structure of an input image. Firstly, we extract the gradient domain guided filter of each atom in high resolution dictionary in order to acquire high-frequency prior information. Secondly, this prior information is taken as a structure constraint and introduced into the low-rank representation framework to develop a new model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal solution of the model is solved through alternating direction method of multipliers. After that, experiments are performed and results show that the proposed algorithm has higher performances than conventional state-of-the-art algorithms in both quantitative and qualitative aspects.

Sums and Weighted Sums of the Score functions of Locally Optimum Rank Detectors (국소 최적 순위 검파기의 점수 함수의 합과 가중합)

  • 배진수;박현경;송익호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.517-523
    • /
    • 2002
  • The closed from of sums and weighted sums of the score functions of the locally optimum rank detectors are obtained in this paper. When we consider the asymptotic performance characteristics of a detector based on rank and sign statistics, the sums and weighted sums of the score functions have to be prepared. The efficacy of a detector can be obtained from the sums and weighted sums of the score functions. Score functions based on rank statistics, as well as those based on magnitude rank and sign statistics, have also been considered, which includes most score functions presented in the literature.

Rank-weighted reconstruction feature for a robust deep neural network-based acoustic model

  • Chung, Hoon;Park, Jeon Gue;Jung, Ho-Young
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.235-241
    • /
    • 2019
  • In this paper, we propose a rank-weighted reconstruction feature to improve the robustness of a feed-forward deep neural network (FFDNN)-based acoustic model. In the FFDNN-based acoustic model, an input feature is constructed by vectorizing a submatrix that is created by slicing the feature vectors of frames within a context window. In this type of feature construction, the appropriate context window size is important because it determines the amount of trivial or discriminative information, such as redundancy, or temporal context of the input features. However, we ascertained whether a single parameter is sufficiently able to control the quantity of information. Therefore, we investigated the input feature construction from the perspectives of rank and nullity, and proposed a rank-weighted reconstruction feature herein, that allows for the retention of speech information components and the reduction in trivial components. The proposed method was evaluated in the TIMIT phone recognition and Wall Street Journal (WSJ) domains. The proposed method reduced the phone error rate of the TIMIT domain from 18.4% to 18.0%, and the word error rate of the WSJ domain from 4.70% to 4.43%.

Analyzing empirical performance of correlation based feature selection with company credit rank score dataset - Emphasis on KOSPI manufacturing companies -

  • Nam, Youn Chang;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.63-71
    • /
    • 2016
  • This paper is about applying efficient data mining method which improves the score calculation and proper building performance of credit ranking score system. The main idea of this data mining technique is accomplishing such objectives by applying Correlation based Feature Selection which could also be used to verify the properness of existing rank scores quickly. This study selected 2047 manufacturing companies on KOSPI market during the period of 2009 to 2013, which have their own credit rank scores given by NICE information service agency. Regarding the relevant financial variables, total 80 variables were collected from KIS-Value and DART (Data Analysis, Retrieval and Transfer System). If correlation based feature selection could select more important variables, then required information and cost would be reduced significantly. Through analysis, this study show that the proposed correlation based feature selection method improves selection and classification process of credit rank system so that the accuracy and credibility would be increased while the cost for building system would be decreased.