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In this paper, we propose a rank‐weighted reconstruction feature to improve the

robustness of a feed‐forward deep neural network (FFDNN)‐based acoustic model.

In the FFDNN‐based acoustic model, an input feature is constructed by vectorizing

a submatrix that is created by slicing the feature vectors of frames within a context

window. In this type of feature construction, the appropriate context window size is

important because it determines the amount of trivial or discriminative information,

such as redundancy, or temporal context of the input features. However, we ascer-

tained whether a single parameter is sufficiently able to control the quantity of infor-

mation. Therefore, we investigated the input feature construction from the

perspectives of rank and nullity, and proposed a rank‐weighted reconstruction fea-

ture herein, that allows for the retention of speech information components and the

reduction in trivial components. The proposed method was evaluated in the TIMIT

phone recognition and Wall Street Journal (WSJ) domains. The proposed method

reduced the phone error rate of the TIMIT domain from 18.4% to 18.0%, and the

word error rate of the WSJ domain from 4.70% to 4.43%.
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1 | INTRODUCTION

Recently, the use of a feed‐forward deep neural network
(FFDNN)‐based acoustic model has a significantly
improved recognition accuracy in large vocabulary continu-
ous speech recognition [1–3]. An FFDNN is a neural
network composed of a set of affine transformations and
nonlinear activation functions. The input feature for the
FFDNN‐based acoustic model is constructed by vectorizing
a submatrix that is created by slicing the feature vectors of
frames within a context window [2–5].

Various studies have been conducted to improve the
performance of the FFDNN‐based acoustic model. The
objectives of these studies have been as follows: to opti-
mize the network structure [6–8], develop loss functions

[9] and optimization techniques [10], augment data [11],
and optimize the hyperparameters.

This work focuses on input feature construction. In a
pioneering work on an FFDNN‐based acoustic model [2],
the construction of an input feature was introduced by stack-
ing the feature vectors of five preceding frames, one central
frame, and five successor frames. In a previous study [4], the
importance of the context window size was investigated
empirically. This work showed that substantial gains of an
FFDNN are attributable to input features concatenated from
several consecutive speech frames within a relatively long
context window. In the paper [5], it was also shown that
frame‐level metrics are further improved through the use of
larger context windows. These works proved that the context
window size should neither be too small nor be too large.
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However, there has been little discussion regarding why the
context window should be a certain size. Instead, there has
been a tendency to expect black‐boxed FFDNNs to be suffi-
ciently representative of a feature's structure.

In this work, we propose a rank‐weighted reconstruction
method after investigating the input feature construction
from the perspectives of rank and nullity. The proposed
method factorizes the independent and null components of
a sliced submatrix using singular value decomposition
(SVD), and reconstructs the submatrix by weighting the
null components to suppress trivial components and retain
informative components.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly describe statistical speech recognition
using the FFDNN‐based acoustic model. In Section 3, the
input feature construction is reviewed. In Section 4, we
present our approach in detail. Section 5 describes the
experimental results, and Section 6 concludes the paper.

2 | STATISTICAL SPEECH
RECOGNITION USING FFDNN‐
BASED ACOUSTIC MODEL

In this section, we briefly describe statistical speech recog-
nition using the FFDNN‐based acoustic model.

2.1 | Statistical Speech Recognition

Statistical speech recognition is a process that finds a word
sequence W� that maximizes the likelihood for a given input
feature vector sequence X ¼ x1; x2; . . . ; xT, as follows:

W� ¼ argmaxwmaxsP XjSð ÞP SjWð ÞP Wð Þ; (1)

where P XjSð Þ is an acoustic model, P SjWð Þ is a pronunci-
ation model, P Wð Þ is a language model, and argmaxw is
the best path search operation.

2.2 | FFDNN‐based acoustic model

An FFDNN is a neural network that has more than one
hidden nonlinear layer. For an input vector xt, each hidden
layer transforms its input vector from the layer below to
the layer above by applying an affine transform and nonlin-
ear mapping, as follows:

z 0ð Þ ¼ xt; (2)

y lð Þ ¼ W lð Þz l�1ð Þ; (3)

z lð Þ ¼ σ y lð Þ
� �

; (4)

where W lð Þ is a weight matrix of the lth layer, and σ xð Þ is
a nonlinear activation function, such as sigmoid(x) or

ReLU(x) [12]. In the last layer, softmax is used to obtain
the probability of the ith class si for an input feature vector
xt, as follows:

p sijxtð Þ ¼ softmax w Lð Þ
i ; z L�1ð Þ

D E� �
; (5)

where L is the number of hidden layers, and w Lð Þ
i ; z L�1ð Þ

D E
are the inner product of the ith row vector of an output
layer matrix and the output of the L� 1ð Þth layer. To sum-
marize, the FFDNN model parameter θ is defined using
weight matrices, as follows:

θ ¼ W 1ð Þ; . . . ;W Lð Þ
n o

: (6)

3 | INPUT FEATURE
CONSTRUCTION

In this section, we describe conventional input feature con-
struction and discuss the issue of the context window size.

3.1 | Background

In speech recognition, a sequence of short‐time speech
frames S ¼ s1; s2; . . . ; st; . . . ; sT½ � are assumed to be a real-
ization of the corresponding phoneme sequence
P ¼ p1; p2; . . . ; pn; . . . ; pN½ �, where st is the t‐th speech
frame and pn is the n‐th phoneme. In general, the phoneme
sequence length N is much smaller than that of speech
frame sequence T. Therefore, there is average of T/N
redundant speech frames, or there is high correlation
among the adjacent speech frames. In addition, short‐time
speech signal st is assumed to be contaminated by back-
ground noise nt for a clean speech frame ct, as st = ct + nt.
There is low cross‐correlation between speech components
and noise components, and the power of the noise signal is
generally lower than that of the speech signal.

Therefore, to improve the performance of speech recogni-
tion, reducing the influence of background noise by reducing
uncorrelated low‐power components and containing adjacent
phoneme information by minimizing temporal dependency in
the feature extraction step should be considered. There are
various approaches to remove the influence of background
noise. Some of the most representative approaches are speech
reconstruction using SVD [13–15] or a Wiener filter [16–18].
However, there is little research on considering the temporal
dependency among adjacent speech frames.

3.2 | Conventional input feature construction

In the FFDNN‐based acoustic model, for an input speech
signal st, studies have been conducted on the use of raw
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waveform signals as the direct input vector [19–21]. How-
ever, Mel frequency cepstral coefficients, perceptual linear
prediction, or a Mel filter bank are more commonly used
feature representations of a speech frame. For a sequence
of these types of feature vectors, an input feature for the
FFDNN‐based acoustic model is constructed by stacking
features within a context window. For example, assuming
that a matrix of O∈Rn�T , representing the feature vectors
of an utterance, is given as follows:

O ¼
0:1 0:1 0:3 � � � 0:2
0:1 0:1 0:3 � � � 0:2
..
. . .

. ..
. . .

. ..
.

0:2 0:2 0:2 . . . 0:2

0
BB@

1
CCA (7)

where ot is the feature of the t‐th speech frame, n is the
dimension of ot, and T is the number of frames in an utter-
ance; in addition, a submatrix of O∈Rn�ð2cþ1Þ is con-
structed by slicing the left and right c column vectors from
the t‐th column, as follows:

Ot ¼ ½ot�c . . . ot . . . otþc� (8)

The input feature xt is then constructed using the vectoriza-
tion operation, as follows:

xt ¼ vec Otð Þ; (9)

where vec (·) is a column stacking operator.

3.3 | Context window size issue

Conventional input feature construction is straightforward.
The only aspect is to set the context window size as an
appropriate value that is neither too small nor too large,
allowing the FFDNN‐based acoustic model to achieve the
best performance that it possibly can. As described previ-
ously, a constructed input feature xt is expected to be com-
posed of high‐power uncorrelated components, which are
related to current and adjacent phoneme information without
low‐power background noise components. However, due to
the difference between the phoneme rate and speech frame
rate, it is difficult to guarantee that a fixed size context win-
dow contains the same amount of phoneme information at
each time. Upon review of the submatrix construction, it can
be noted that the context window size affects the dimension
of the submatrix Ot, where the dimension of the submatrix is
the sum of the rank and nullity, as follows:

dimðOtÞ ¼ rank Otð Þ þ nul Otð Þ: (10)

In other words, it can be assumed that the rank and nul-
lity of the submatrix may vary depending on the context
window size, wherein the rank and nullity represent the
number of informative and trivial components, respectively.
However, the problem is that it is not known how many

number of rank or nullity increase actually. As the context
window changes, the rank or nullity may increase.

4 | RANK‐WEIGHTED
RECONSTRUCTION FEATURE

The primary objective of this work is to factorize the sub-
matrix Ot with two components, as follows:

Ot ¼ Rt þ Nt; (11)

where Rt denotes the informative components, and Nt

denotes trivial components, and the submatrix Ot is then
reconstructed by controlling the contribution of trivial com-
ponents, as follows:

Ot ≈ Rt þ γNt; (12)

where γ controls the contribution of the relatively trivial
components. In this framework, problems exist in terms of
how to define the more informative components and how
to factorize Rt and Nt from Ot based on this criterion.

4.1 | Single value decomposition

In this work, we use SVD‐based matrix factorization [22].
A given matrix Ut ∈Rn�ð2cþ1Þ can be decomposed into
three matrices, U, Σ, and V, as follows:

Ot ¼ UΣVT; (13)

where the left and right singular matrices U∈Rn�ð2cþ1Þ and
V∈Rn�ð2cþ1Þ are orthogonal, and the matrix Σ∈Rð2cþ1Þ�

ð2cþ 1Þ has a diagonal form, as follows:

Σ ¼ diag σ1; σ2; . . . ; σ2cþ1ð Þ: (14)

The diagonal elements {σi} of Σ are the singular values of
Ot, and are ordered such that

σ1 ≥ σ2 ≥ � � � ; σ2cþ1: (15)

A submatrix is then reconstructed, as follows:

Ot ¼ ∑
2cþ1

i¼1
σiuivTi : (16)

It is generally understood that smaller singular values
and their corresponding singular vectors should not signifi-
cantly contribute to the matrix, and thus, the original matrix
should be accurately reconstructed by ignoring the smaller
singular values along with the singular vectors U and V.

4.2 | Rank‐weight matrix reconstruction

In this work, we consider a matrix reconstructed by top‐k
singular vectors to be Rt, and a matrix reconstructed by
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lower 2c + 1 − k singular vectors to be Nt. In the proposed
approach, a submatrix is therefore represented as the sum
of two matrices, as follows:

�Ot ≈ ∑k
i¼1σiuiv

T
i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Rt

þ γ∑2cþ1
i¼kþ1σiuiv

T
i|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Nt

(17)

where the two variables k and γ are introduced to control
the amount of information more precisely. If γ is setas 1.0,
it is the same as the baseline system, and if γ is set as 0.0,
it is the same as a truncated SVD. For a reconstructed sub-
matrix, the input feature at time t, xt is constructed through
vectorization as follows:

xt ¼ vec �Ot
� �

: (18)

Table 1 summarizes the parameters needed to con-
struct the input features for both the conventional and
proposed approaches. In the conventional approach, the
context window size c is the only controllable parame-
ter. Other parameters, such as rank k and weight γ, are
fixed at 2c + 1 and 1.0, respectively. However, all of
these parameters are controllable in the proposed
approach.

5 | EXPERIMENTS AND RESULTS

The effectiveness of the proposed approach was evaluated
for the TIMIT phone recognition and WSJ domains using
the Kaldi toolkit [23].

5.1 | TIMIT domain

This training set contains 3696 sentences uttered by
462 speakers. Five percent of the training data is ran-
domly selected as part of the validation set. The 24‐
speaker standard test set is used for evaluation. Each
frame was represented by 40‐dimensional speaker
adapted feature space maximum likelihood linear
regression (fMLLR) features. We used the Kaldi
TIMITs5 recipe to build the phoneme recognizer. The
recognizer includes a bigram phoneme language model
that was created from the training set. The 61 pho-
nemes were mapped into 48 phonemes for training, and
39 phonemes for testing.

5.2 | WSJ domain

The WSJ corpus consists of read speech and text data from
the Wall Street Journal. The speech data were recorded
from many speakers reading subsets of the text data. We
used the si284 training set with 81 h of speech data.

We also used Dev93 as the dev set and Eval92 as the
test set [24]. The WSJ speech recognition task converts
speech audio into a sequence of words. We used the Kaldi
WSJ s5 recipe (eg, “local/online/run_nnet2 baseline.sh”) to
build the speech recognizer. The acoustic model was an
FFDNNHMM hybrid. Each frame was represented using
13‐dimensional fMLLR features.

5.3 | Experimental results

In this work, we conducted experiments by varying the
weight parameter γ from 1.0 to 0.0 in intervals of 0.1, and
the rank parameter k from 1 to 2c + 1 for each context
window size c.

Tables 2 and 3 show the experimental results for the
TIMIT domain, and Tables 4 and 5 show the experimental
results for the WSJ domain. It shows the best performance
and parameter settings for different context window sizes.
For the TIMIT domain, at up to two context window sizes,
the baseline system and the proposed method achieved the
same best performance levels by using input features that
had been reconstructed with full ranks. However, for larger
context window sizes, the proposed method reduced the
WER more than that of the baseline by using input features
that had been reconstructed using the top‐k rank instead.
As shown in Table 2, for the TIMIT development set, the
baseline system achieved the lowest WER by 17.3%, with
a context window size of 3 and a corresponding rank of 7,
and it achieved WER by 19.1% for the test set with the
same context window size. The proposed method further
reduced the WER to 18.6% by reconstructing top‐6 ranks,
and weighting other features by 0.2 for the same context
window size of 3.

TABLE 1 Parameters used for input vector construction

Parameter Conventional Proposed

Context window c c

Rank 2cþ 1 k

Weight 1.0 γ

TABLE 2 WER (%) of baseline on different context window
sizes for TIMIT domain

c Dev (%) Test (%)

0 19.8 21.6

1 18.4 19.7

2 17.7 19.2

3 17.3 19.1

4 17.5 18.5

5 17.6 18.4

6 17.6 18.9
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For the TIMIT domain, it should be noted that state‐
of‐the‐art systems, including the Kaldi toolkit, report the
baseline performance using a five context window size
from the aspect of the test set, even if the best context
window size is 3 [24,25]. Therefore, from the aspect of
the best performance for the test set, the baseline systems
achieved the lowest WER by 18.4% with a context win-
dow size of 5 and a corresponding rank of 11. However,
the proposed method further reduced the WER by 18.0%

using reconstruction features with top‐8 ranks, and other
features weighted by 0.1 for the same context window
size of 5.

For the case of the WSJ domain, for up to three context
window sizes, both the baseline system and the proposed
method achieved the same best performance levels using
input features that had been reconstructed with full ranks.
However, for context window sizes >3, the proposed rank‐
weighted reconstruction features showed a better perfor-
mance. For example, the baseline achieved the lowest
WER by 7.52% for the development set and 4.75% for the
test set using a context window size of 5. However, the pro-
posed approach reduced the WER to 7.43% for the devel-
opment set and 4.50% for the test set. For the case
considering the test set, the baseline achieved the lowest
WER by 4.70% when it used a context window size of 7,
with a full rank of 15. However, the proposed approach
further reduced WER to 4.54% for the same context win-
dow size of 7, with a lower rank of 12. In addition, the
proposed approach achieved the lowest WER by 4.43%,
with a context window size of 6 and a rank of 12.

6 | CONCLUSIONS

In this paper, we proposed the rank‐weighted reconstruc-
tion method after investigating an input feature construction
from the perspective of rank and nullity. The proposed
method factorizes independent and null components of the
sliced submatrix using SVD, and reconstructs a submatrix
by weighting the null components to suppress trivial com-
ponents and retain informative components. When com-
pared to the conventional approach, the proposed method
provides a more sophisticated strategy for constructing the
input features by introducing two controllable parameters,
such as the rank and weighting factor. For the TIMIT and
WSJ domains, the proposed approach reduced the WERs
from 18.4% to 18.0%, and from 4.70% to 4.43%, respec-
tively, by using reconstructed features with weighted low
rank components. In conclusion, the proposed input feature
construction method introduces two additional parameters
outside of the context window size to control the rank of a
submatrix and the contribution of trivial components. In
addition, the method shows that a high dimension com-
bined with a low rank improves the performance of the
FFDNN‐based acoustic model.
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