• Title/Summary/Keyword: range camera

Search Result 803, Processing Time 0.037 seconds

Comparison of Biomechanical Characteristics of Rowing Performance between Elite and Non-Elite Scull Rowers: A Pilot Study

  • Kim, Jin-Sun;Cho, Hanyeop;Han, Bo-Ram;Yoon, So-Ya;Park, Seonhyung;Cho, Hyunseung;Lee, Joohyeon;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • Objective: This study aimed to examine the characteristics of joint kinematics and synchronicity of rowing motion between elite and non-elite rowers. Methods: Two elite and two non-elite rowers performed rowing strokes (3 trials, 20 strokes in each trial) at three different stroke rates (20, 30, 40 stroke/min) on two stationary rowing ergometers. The rowing motions of the rowers were captured using a 3-dimensional motion analysis system (8-infrared camera VICON system, Oxford, UK). The range of motion (RoM) of the knee, hip, and elbow joints on the sagittal plane, the lead time ($T_{Lead}$) and the drive time $T_{Drive}$) for each joint, and the elapsed time for the knee joint to maintain a fully extended position ($T_{Knee}$) during the stroke were analyzed and compared between elite and non-elite rowers. Synchronicity of the rowing motion within and between groups was examined using coefficients of variation (CV) of the $T_{Drive}$ for each joint. Results: Regardless of the stroke rate, the RoM of all joints were greater for the elite than for non-elite rowers, except for the RoMs of the knee joint at 30 stroke/min and the elbow joint at 40 stroke/min (p < .05). Although the $T_{Lead}$ at all stroke rates were the same between the groups, the $T_{Drive}$ for each joint was shorter for the elite than for the non-elite rowers. During the drive phase, elite rowers kept the fully extended knee joint angle longer than the non-elite rowers (p < .05). The CV values of the TDrive within each group were smaller for the elite compared with non-elite rowers, except for the CV values of the hip at all stroke/min and elbow at 40 stroke/min. Conclusion: The elite, compared with non-elite, rowers seem to be able to perform more powerful and efficient rowing strokes with large RoM and a short $T_{Drive}$ with the same $T_{Lead}$.

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

IGRINS First Light Instrumental Performance

  • Park, Chan;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Park, Byeong-Gon;T., Daniel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is an unprecedentedly minimized infrared cross-dispersed echelle spectrograph with a high-resolution and high-sensitivity optical performance. A silicon immersion grating features the instrument for the first time in this field. IGRINS will cover the entire portion of the wavelength range between 1.45 and $2.45{\mu}m$ accessible from the ground in a single exposure with spectral resolution of 40,000. Individual volume phase holographic (VPH) gratings serve as cross-dispersing elements for separate spectrograph arms covering the H and K bands. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{\prime\prime}{\times}15^{\prime\prime}$. IGRINS has a $0.27^{\prime\prime}$ pixel-1 plate scale on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized rectangular vacuum chamber. The fabrication and assembly of the optical and mechanical hardware components were completed in 2013. In this presentation, we describe the major design characteristics of the instrument and the early performance estimated from the first light commissioning at the McDonald Observatory.

  • PDF

Study on Measurement Condition Effects of CRP-based Structure Monitoring Techniques for Disaster Response (재해 대응을 위한 CRP기반 시설물 모니터링 기법의 계측조건 영향 분석)

  • Lee, Donghwan;Leem, Junghyun;Park, Jihwan;Yu, Byoungjoon;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.541-547
    • /
    • 2017
  • Climate change has become the main cause of the exacerbation in natural disasters. Social Overhead Capital(SOC) structure needs to be checked for displacement and crack periodically to prevent damage and the collapse caused by natural disaster and ensure the safety. For efficient structure maintenance, the optical image technology is applied to the Structure Health Monitoring(SHM). However, optical image is sensitive to environmental factors. So it is necessary to verify its validity. In this paper, the accuracy of estimating the vertical displacement was verified with respect to environmental condition such as natural light, measurement distance, and the number of image sheets. The result of experiments showed that the effect of natural light on accuracy of estimating vertical displacement was the greatest of all. The measurement angle which was affected by the change in measurement distance was also important to check the vertical displacement. These findings will be taken into account by applying appropriate environmental condition to minimize errors when the bridge was measured by camera. It will also enable the application of optical images to the SHM.

LATEST RESULTS OF THE MAXI MISSION

  • MIHARA, TATEHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.559-563
    • /
    • 2015
  • Monitor of All-sky X-ray Image (MAXI) is a Japanese X-ray all-sky surveyer mounted on the International Space Station (ISS). It has been scanning the whole sky since 2009 during every 92-minute ISS rotation. X-ray transients are quickly found by the real-time nova-search program. As a result, MAXI has issued 133 Astronomer's Telegrams and 44 Gamma-ray burst Coordinated Networks so far. MAXI has discovered six new black holes (BH) in 4.5 years. Long-term behaviors of the MAXI BHs can be classified into two types by their outbursts; a fast-rise exponential-decay type and a fast-rise flat-top one. The slit camera is suitable for accumulating data over a long time. MAXI issued a 37-month catalog containing 500 sources above a ~0.6 mCrab detection limit at 4-10 keV in the region ${\mid}{b}{\mid}$ > $10^{\circ}$. The SSC instrument utilizing an X-ray CCD has detected diffuse soft X-rays extending over a large solid angle, such as the Cygnus super bubble. MAXI/SSC has also detcted a Ne emission line from the rapid soft X-ray nova MAXI J0158-744. The overall shapes of outbursts in Be X-ray binaries (BeXRB) are precisely observed with MAXI/GSC. BeXRB have two kinds of outbursts, a normal outburst and a giant one. The peak dates of the subsequent giant outbursts of A0535+26 repeated with a different period than the orbital one. The Be stellar disk is considered to either have a precession motion or a distorted shape. The long-term behaviors of low-mass X-ray binaries (LMXB) containing weakly magnetized neutron stars are investigated. Transient LMXBs (Aql X-1 and 4U 1608-52) repeated outbursts every 200-1000 days, which is understood by the limit-cycle of hydrogen ionization states in the outer accretion disk. A third state (very dim state) in Aql X-1 and 4U 1608-52 was interpreted as the propeller effect in the unified picture of LMXB. Cir X-1 is a peculiar source in the sense that its long-term behavior is not like typical LMXBs. The luminosity sometimes decreases suddenly at periastron. It might be explained by the stripping of the outer accretion disk by a clumpy stellar wind. MAXI observed 64 large flares from 22 active stars (RS CVns, dMe stars, Argol types, young stellar objects) over 4 years. The total energies are $10^{34}-10^{36}$ erg $s^{-1}$. Since MAXI can measure the spectrum (temperature and emission measure), we can estimate the size of the plasma and the magnetic fields. The size sometimes exceeds the size of the star. The magnetic field is in the range of 10-100 gauss, which is a typical value for solar flares.

Direct Bonding of SillSiO2/Si3N4llSi Wafer Fairs with a Fast Linear Annealing (선형가열기를 이용한 SillSiO2/Si3N4llSi 이종기판쌍의 직접접합)

  • 이상현;이상돈;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.301-307
    • /
    • 2002
  • Direct bonded SOI wafer pairs with $Si ll SiO_2/Si_3N_4 ll Si$ the heterogeneous insulating layers of SiO$_2$-Si$_3$N$_4$are able to apply to the micropumps and MEMS applications. Direct bonding should be executed at low temperature to avoid the warpage of the wafer pairs and inter-diffusion of materials at the interface. 10 cm diameter 2000 ${\AA}-SiO_2/Si(100}$ and 560 $\AA$- ${\AA}-Si_3N_4/Si(100}$ wafers were prepared, and wet cleaned to activate the surface as hydrophilic and hydrophobic states, respectively. Cleaned wafers were pre- mated with facing the mirror planes by a specially designed aligner in class-100 clean room immediately. We employed a heat treatment equipment so called fast linear annealing(FLA) with a halogen lamp to enhance the bonding of pre mated wafers We kept the scan velocity of 0.08 mm/sec, which implied bonding process time of 125 sec/wafer pairs, by varying the heat input at the range of 320~550 W. We measured the bonding area by using the infrared camera and the bonding strength by the razor blade clack opening method, respective1y. It was confirmed that the bonding area was between 80% and to 95% as FLA heat input increased. The bonding strength became the equal of $1000^{\circ}C$ heat treated $Si ll SiO_2/Si_3N_4 ll Si$ pair by an electric furnace. Bonding strength increased to 2500 mJ/$\textrm{m}^2$as heat input increased, which is identical value of annealing at $1000^{\circ}C$-2 hr with an electric furnace. Our results implies that we obtained the enough bonding strength using the FLA, in less process time of 125 seconds and at lowed annealing temperature of $400^{\circ}C$, comparing with the conventional electric furnace annealing.

Two Design Techniques of Embedded Systems Based on Ad-Hoc Network for Wireless Image Observation (애드 혹 네트워크 기반의 무선 영상 관측용 임베디드 시스템의 두 가지 설계 기법들)

  • LEE, Yong Up;Song, Chang-Yeoung;Park, Jeong-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.271-279
    • /
    • 2014
  • In this paper, the two design techniques of the embedded system which provides a wireless image observation with temporary ad-hoc network are proposed and developed. The first method is based on the embedded system design technique for a nearly real-time wireless short observation application, having a specific remote monitoring node with a built-in image processing function, and having the maximum rate of 1 fps (frame per second) wireless image transmission capability of a $160{\times}128$size image. The second technique uses the embedded system for a general wireless long observation application, consisting of the main node, the remote monitoring node, and the system controller with built-in image processing function, and the capability of the wireless image transmission rate of 1/3 fps. The proposed system uses the wireless ad-hoc network which is widely accepted as a short range, low power, and bidirectional digital communication, the hardware are consisted of the general developed modules, a small digital camera, and a PC, and the embedded software based upon the Zigbee stack and the user interface software are developed and tested on the implemented module. The wireless environment analysis and the performance results are presented.

A Study on the Droplet Formation of Liquid Metal in Water-Mercury System as a Surrogate of Molten Salt-Liquid Metal System at Room Temperature (용융염-액체금속 계의 대용물인 물-수은 계에서 액체금속 액적의 생성에 대한 연구)

  • Kim, Yong-il;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.165-172
    • /
    • 2018
  • As an approach for estimation of the droplet size in the molten salt-liquid metal extraction process, a droplet formation experiment at room temperature was conducted to evaluate the applicability of the Scheele-Meister model with water-mercury system as a surrogate that is similar to the molten salt-liquid metal system. In the experiment, droplets were formed through the nozzle and the droplet size was measured using a digital camera and image analysis software. As nozzles, commercially available needles with inner diameters (ID) of 0.018 cm and 0.025 cm and self-fabricated nozzles with 3-holes (ID: 0.0135 cm), 4-holes (ID: 0.0135 cm), and 2-holes (ID: 0.0148 cm) were used. The mercury penetration lengths in the nozzles were 1.3 cm for the needles and 0.5 cm for the self-fabricated nozzles. The droplets formed from each nozzle maintained stable spherical shape up to 20 cm below the nozzle. The droplet size measurements were within a 10% error range when compared to the Scheele-Meister model estimates. The experimental results show that the Scheele-Meister model for droplet size estimation can be applied to nozzles that stably form droplets in a water-mercury system.

Face recognition using PCA and face direction information (PCA와 얼굴방향 정보를 이용한 얼굴인식)

  • Kim, Seung-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.609-616
    • /
    • 2017
  • In this paper, we propose an algorithm to obtain more stable and high recognition rate by using left and right rotation information of input image in order to obtain a stable recognition rate in face recognition. The proposed algorithm uses the facial image as the input information in the web camera environment to reduce the size of the image and normalize the information about the brightness and color to obtain the improved recognition rate. We apply Principal Component Analysis (PCA) to the detected candidate regions to obtain feature vectors and classify faces. Also, In order to reduce the error rate range of the recognition rate, a set of data with the left and right $45^{\circ}$ rotation information is constructed considering the directionality of the input face image, and each feature vector is obtained with PCA. In order to obtain a stable recognition rate with the obtained feature vector, it is after scattered in the eigenspace and the final face is recognized by comparing euclidean distant distances to each feature. The PCA-based feature vector is low-dimensional data, but there is no problem in expressing the face, and the recognition speed can be fast because of the small amount of calculation. The method proposed in this paper can improve the safety and accuracy of recognition and recognition rate faster than other algorithms, and can be used for real-time recognition system.

Estimation of Benthic Microalgae Chlorophyll-a Concentration in Mudflat Surfaces of Geunso Bay Using Ground-based Hyperspectral Data (지상 초분광자료를 이용한 근소만 갯벌표층에서 저서성 미세조류의 엽록소-a 공간분포 추정)

  • Koh, Sooyoon;Noh, Jaehoon;Baek, Seungil;Lee, Howon;Won, Jongseok;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1111-1124
    • /
    • 2021
  • Mudflats are crucial for understanding the ecological structure and biological function of coastal ecosystem because of its high primary production by microalgae. There have been many studies on measuring primary productivity of tidal flats for the estimation of organic carbon abundance, but it is relatively recent that optical remote sensing technique, particularly hyperspectral sensing, was used for it. This study investigates hyperspectral sensing of chlorophyll concentration on a tidal flat surface, which is a key variable in deriving primary productivity. The study site is a mudflat in Geunso bay, South Korea and field campaigns were conducted at ebb tide in April and June 2021. Hyperspectral reflectance of the mudflat surfaces was measured with two types of hyperspectral sensors; TriOS RAMSES (directionalsensor) and the Specim-IQ (camera sensor), and Normal Differenced Vegetation Index (NDVI) and Contiuum Removal Depth (CRD) were used to estimate Chl-a from the optical measurements. The validation performed against independent field measurements of Chl-a showed that both CRD and NDVI can retrieve surface Chl-a with R2 around 0.7 for the Chl-a range of 0~150 mg/m2 tested in this study.