• Title/Summary/Keyword: randomness

Search Result 448, Processing Time 0.02 seconds

Effects of Competition between Phase Separation and Ester Interchange Reactions on the Phase Behavior in a Phase-Separated Immiscible Polyester Blend: Monte Carlo Simulation

  • Youk, Ji-Ho;Jo, Won-Ho
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.81-85
    • /
    • 2001
  • The effects of rate of phase separation to ester interchange reactions and the repulsive pair interaction energy on the phase behavior in a phase-separated immiscible polyester blend are investigated using a Monte Carlo simulation method. The time evolution of structure factor and the degree of randomness are monitored as a function of homogenization time. When the phase separation is dominant over ester interchange reactions, the domain size slowly increases with homogenization time. However, when the pair interaction becomes less repulsive, the domain size does not significantly change with homogenization time. On the other hand, when ester interchange reactions are dominant over the phase separation, the homogenization proceeds without a change in the domain size. The higher the extent of phase separation, the lower the increasing rate of the DR. However, when the phase separation is sufficiently dominant, the effect of the extent of phase separation on the increasing rate of the degree of randomness become less significant.

  • PDF

Development of Probabilistic-Fuzzy Model for Seismic Hazard Analysis (지진예측을 위한 확률론적퍼지모형의 개발)

  • 홍갑표
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.107-115
    • /
    • 1991
  • A probabilistic-Fuzzy model for seismic hazard analysis is developed. The proposed model is able to reproduce both the randomness and the imprecision in conjunction with earthquake occurrences. Results-of this research are (a) membership functions of both peak ground accelerations associated with a given probability of exceedance and probabilities of exceedance associated with a given peak ground acceleration, and (b) characteristic values of membership functions at each location of interest. The proposed probabilistic-fuzzy model for assessment of seismic hazard is successfully applied to the Wasatch Front Range in Utah in order to obtain the seismic maps for different annual probabilities of exceedance, different peak ground accelerations, and different time periods.

  • PDF

ONLINE TEST BASED ON MUTUAL INFORMATION FOR TRUE RANDOM NUMBER GENERATORS

  • Kim, Young-Sik;Yeom, Yongjin;Choi, Hee Bong
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.879-897
    • /
    • 2013
  • Shannon entropy is one of the widely used randomness measures especially for cryptographic applications. However, the conventional entropy tests are less sensitive to the inter-bit dependency in random samples. In this paper, we propose new online randomness test schemes for true random number generators (TRNGs) based on the mutual information between consecutive ${\kappa}$-bit output blocks for testing of inter-bit dependency in random samples. By estimating the block entropies of distinct lengths at the same time, it is possible to measure the mutual information, which is closely related to the amount of the statistical dependency between two consecutive data blocks. In addition, we propose a new estimation method for entropies, which accumulates intermediate values of the number of frequencies. The proposed method can estimate entropy with less samples than Maurer-Coron type entropy test can. By numerical simulations, it is shown that the new proposed scheme can be used as a reliable online entropy estimator for TRNGs used by cryptographic modules.

Designing Statistical Test for Mean of Random Profiles

  • Bahri, Mehrab;Hadi-Vencheh, Abdollah
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.4
    • /
    • pp.432-445
    • /
    • 2016
  • A random profile is the result of a process, the output of which is a function instead of a scalar or vector quantity. In the nature of these objects, two main dimensions of "functionality" and "randomness" can be recognized. Valuable researches have been conducted to present control charts for monitoring such processes in which a regression approach has been applied by focusing on "randomness" of profiles. Performing other statistical techniques such as hypothesis testing for different parameters, comparing parameters of two populations, ANOVA, DOE, etc. has been postponed thus far, because the "functional" nature of profiles is ignored. In this paper, first, some needed theorems are proven with an applied approach, so that be understandable for an engineer which is unfamiliar with advanced mathematical analysis. Then, as an application of that, a statistical test is designed for mean of continuous random profiles. Finally, using experimental operating characteristic curves obtained in computer simulation, it is demonstrated that the presented tests are properly able to recognize deviations in the null hypothesis.

Stochastic finite element analysis of plate structures by weighted integral method

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.703-715
    • /
    • 1996
  • In stochastic analysis, the randomness of the structural parameters is taken into consideration and the response variability is obtained in addition to the conventional (mean) response. In the present paper the structural response variability of plate structure is calculated using the weighted integral method and is compared with the results obtained by different methods. The stochastic field is assumed to be normally distributed and to have the homogeneity. The decomposition of strain-displacement matrix enabled us to extend the formulation to the stochastic analysis with the quadratic elements in the weighted integral method. A new auto-correlation function is derived considering the uncertainty of plate thickness. The results obtained in the numerical examples by two different methods, i.e., weighted integral method and Monte Carlo simulation, are in a close agreement. In the case of the variable plate thickness, the obtained results are in good agreement with those of Lawrence and Monte Carlo simulation.

Probability distribution and statistical moments of the maximum wind velocity

  • Schettini, Evelia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.287-302
    • /
    • 1998
  • This paper formulates a probabilistic model which is able to represent the maximum instantaneous wind velocity. Unlike the classical methods, where the randomness is circumscribed within the mean maximum component, this model relies also on the randomness of the maximum value of the turbulent fluctuation. The application of the FOSM method furnishes the first and second statistical moments in closed form. The comparison between the results herein obtained and those supplied by classical methods points out the central role of the turbulence intensity. Its importance is exalted when extending the analysis from the wind velocity to the wind pressure.

ROSS: Low-Cost Self-Securing VoIP Communication Framework

  • Syafalni, Alfin;Samsudin, Azman;Jaafar, Yazid;Omar, Mohd. Adib
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3366-3383
    • /
    • 2012
  • Reliance on the Internet has introduced Voice over Internet Protocol (VoIP) to various security threats. A reliable security protocol and an authentication scheme are thus required to prevent the aforementioned threats. However, an authentication scheme often demands additional cost and effort. Accordingly, a security framework for known participants in VoIP communication is proposed in this paper. The framework is known as Randomness-Optimized Self-Securing (ROSS), which performs authentication automatically throughout the session by optimizing the uniqueness and randomness of the communication itself. Elliptic Curve Diffie-Hellman (ECDH) key exchange and Salsa20 stream cipher are utilized in the framework correspondingly to secure the key agreement and the communication with low computational cost. Human intelligence supports ROSS authentication process to ensure participant authenticity and communication regularity. The results show that with marginal overhead, the proposed framework is able to secure VoIP communication by performing reliable authentication.

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

Utilisation of IoT Systems as Entropy Source for Random Number Generation

  • Oguzhan ARSLAN;Ismail KIRBAS
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.77-86
    • /
    • 2024
  • Using random numbers to represent uncertainty and unpredictability is essential in many industries. This is crucial in disciplines like computer science, cryptography, and statistics where the use of randomness helps to guarantee the security and dependability of systems and procedures. In computer science, random number generation is used to generate passwords, keys, and other security tokens as well as to add randomness to algorithms and simulations. According to recent research, the hardware random number generators used in billions of Internet of Things devices do not produce enough entropy. This article describes how raw data gathered by IoT system sensors can be used to generate random numbers for cryptography systems and also examines the results of these random numbers. The results obtained have been validated by successfully passing the FIPS 140-1 and NIST 800-22 test suites.

An Extension of Firmware-based LFSR One-Time Password Generators

  • HoonJae Lee;ByungGook Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.35-43
    • /
    • 2024
  • In this paper, we propose two 127-bit LFSR (Linear Feedback Shift Register)-based OTP (One-Time Password) generators. One is a 9-digit decimal OTP generator with thirty taps, while the other is a 12-digit OTP generator with forty taps. The 9-digit OTP generator includes only the positions of Fibonacci numbers to enhance randomness, whereas the 12-digit OTP generator includes the positions of prime numbers and odd numbers. Both proposed OTP generators are implemented on an Arduino module, and randomness evaluations indicate that the generators perform well across six criteria and are straightforward to implement with Arduino.