To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.
오늘날 AI는 여러 산업 분야에 적용되면서 전반적인 산업의 패러다임의 변화를 이끌고 있다. 패션 산업 분야에서도 트렌드 예측이나 소비자를 위한 다양한 서비스를 위하여 AI가 활용되고 있으며 특히 AI 이미지 생성 도구는 패션디자인 개발을 위한 도구로서의 가능성을 가진다. 본 연구는 AI 이미지 생성 도구 중에서 미드저니를 사용하여 이미지를 생성해보고 그 특징을 파악함으로써 패션디자인 개발을 위하여 미드저니의 활용 가능성과 한계점을 알아보았다. 미드저니에서 생성되는 이미지의 특징은 다음과 같다. 첫째, 명령어에 해당하는 이미지들을 직관적으로 적용 또는 조합하여 이미지를 생성하는 직관성을 가진다. 둘째, 동일한 명령어라도 시차를 두고 입력할 때 다른 이미지가 생성되는 무작위성을 가진다. 셋째, 기존의 이미지와 명령어를 함께 사용할 경우 미드저니에서 생성된 이미지는 명령어보다 기존의 이미지에 더 의존적이다. 결론적으로 미드저니의 다양한 이미지 생성 기능과 명령어에 따라 이미지가 변하는 특징은 독창적인 패션디자인을 개발하는 데 도움이 될 수 있겠다. 다만 착용이나 제작이 불가한 패션디자인이 제시되기도 한다는 점은 주의해야 할 부분이다. 본 연구 결과가 패션디자인 개발을 위한 AI 이미지 생성 도구의 활용에 있어 기초 자료가 되기를 기대한다.
본 연구는 오대산의 전나무 노령임분(老齡林分)내 숲틈에서 발생된 1~2년생 전나무 치수(416개체)의 공간적 유전구조를 파악하기 위하여 ISSR(inter-simple sequence repeats) 표지자 분석을 실시하였다. 대상 숲틈의 크기는 $1,500m^2(50m{\times}30m)$로 전나무이외 수종의 상층임관 일부와 중 하층임관이 제거되고, 전나무 성목은 입목고사(立木枯死) 혹은 수세가 불량한 상태이다. 31개의 다형성 ISSR 표지자를 이용한 공간의 자기상관성분석에서는 15.6m이내에 유전적 동질성을 갖으며, 이후 31.2m까지는 임의분포를 나타내었다. 숲틈내 전나무 성목의 평균수고(21.1m), 종자의 산포범위, 성목간 평균거리(23.7m)를 고려할 때, 전나무 치수의 유전적 군락 크기(genetic patch size)는 모수의 분포밀도에 따라서 제한받는 것으로 추정된다. 치수 산포에 대한 방향성 파악을 위하여 유전적 거리를 이용한 다차원척도법의 형상좌표를 '유전적 형상(genetic configuration)'으로 설정하고, 이를 이용한 분산도분석을 실시하였다. 지향성 분산도에서는 동서방향으로 거리의 증가에 따라 치수간 유전적 동질성이 계속 감소하는 것으로 나타났다. 오대산 전나무림의 막대한 종자생산량과 조사구내 치수 발생수의 임의분포와 임상(林床)의 균일성을 고려하면, 이러한 전나무 치수의 유전적 방향은 모수간 충실율 차이나 국소환경보다는 종자 산포의 방향성에 따른 것으로 생각된다.
파형의 왜도, 저류 외에도 구속 모드의 외중력파, 경계층 streaming이 반영된 개선된 횡단표사 모듈이 제시되었으며, 개선된 모듈에서는 단위 관측기간 내에서 출현하기 마련인 개별 파랑도 고려된다. 이어 불규칙한 개별 파랑이 표사이송에 미치는 영향을 확인하기 위해 단조해안에서의 비선형 천수과정과 해변변형을 수치모의 하였다. 모의결과 최근 적용범위가 쇄파역으로 확대된 주파수 영역 Boussinesq Eq.은 쇄파역에서 흔히 관측되는 치근 모양의 파형, 구속 모드의 외중력파, 경계층 streaming의 모의가 가능한 것으로 판단된다. 또한 연 최대 고파랑이라는 해양환경을 등가 비선형 규칙파[Cnoidal wave]로 해석하는 경우 최대 횡단표사 이송률은 불규칙 파랑에서 관측되는 이송률의 세 배에 달할 정도로 지나치게 과다하게 모의되었으며, 이는 외빈과 원빈의 과다한 침식으로 이어졌다. 또한 연안 표사 이송과 관련된 free parameter K를 최적화하기 위해 맹방해빈의 2017.4.26부터 2018.4.20까지의 해안선 변화를 수치모의 하였으며, 최적화 과정에는 실측된 해안선 위치를 활용하였다. 모의 결과 맹방 표사계의 경우 최적화된 K는 0.17로 보이며, 이 경우 10월 말에 연이어 내습한 최대 고파랑에 의해 침식된 해안이 동절기와 춘절기의 너울에 의해 점진적으로 복원되는 대순환 과정을 거쳐 해안선이 맹방해안 남단과 북단에서는 18 m, 맹방 해안 중앙부에서는 2.4 m 내외로 전진하는 관측결과에 상당히 근접한 수치모의가 가능한 것을 확인하였다.
본 연구는 고등학교 수학교과에서 배우는 모평균의 신뢰구간 구하기와 같은 통계적 추론 능력을 기르기 위한 방안의 첫 단계연구이다. 통계적 추론과정을 비판적으로 분석하여 신뢰할만한 추론방법으로 이를 인정할 수 있는 표본개념의 형성을 위해, 연구자들은 우연과 필연, 귀납과 연역, 가능성원리, 통계량의 변이성, 통계적 모형 등의 하위 개념들이 형성되어야 한다고 보았다. 그리고 초중등 통계단원의 전 과정에서 이들 개념의 체계적인 발달을 도모해야 한다는 전제 아래, 초 중 고등학교 통계단원을 분석해 본 결과는 아래와 같았다. 첫째, 문제해결 방법 선택의 지도와 관련하여, 통계적 방법을 선택할 문제 상황으로서, 우연적 상황을 필연적 상황과 구분하기위한 설명이 있는 교과서가 초등학교에는 없고, 중등 수준에서도 매우 드물었다. 둘째 표본의 모집단 관련 의미를 이해시키려는 단계적 준비가 미흡하다고 할 수 있다. 전체와 부분의 모집단과 표본 구분이 고등학교에서 비로소 공식화되고 있으며, 초 중학교에서 사용되는 표본자료는 그것으로부터 얻어지는 계산적 결과에만 초점이 맞추어짐으로서, 학년이 올라감에 따라 모집단을 향한 귀납적 추론의 신뢰성에 대한 비판적 사고의 깊이가 더해지는 모습을 찾아보기 어려웠다. 셋째, 무작위 추출이 갖는 대표성의 의미에 대한 설명보다는 무작위 활동 자체에 대한 설명이 중심이 됨으로서 무작위 추출의 확률적 의미, 즉 무작위 표본을 통해 구해질 통계량의 표집분포에서의 (상속된) 무작위성을 위한 담보로서의 목적에 대한 설명이 없다는 점이다. 넷째 통계적 추론을 수학(연역)적 추론과 구분해 주는 설명이 없을 뿐 아니라, 학습자의 논리성 발달 수준에 맞게 변화하는 가능성원리에 대한 설명, 적용 등을 전혀 찾기 어렵다는 점이다. 다섯째 통계량의 우연변이성과 그에 따른 표집분포의 존재에 대한 이해를 추구하는 설명을 찾기 어렵다는 점이다. 표집분포를 수학적으로 구하는 것은 매우 어려운 과정이지만, 그것의 존재를 인식하느냐 못하느냐는 통계적 추론 자체의 이해 가능성을 달리하는 중요한 문제이기 때문이다.
이 글은 "노자의 도와 소쉬르의 언어학: 잘못된 만남"의 후속편으로 기획되었다. 노자의 도와 소쉬르의 언어학의 접점을 찾기 위해 '비상명(非常名)'을 어떻게 이해해야할까라는 질문을 던졌다. 노자의 '비상명'이 소쉬르가 말한 기호의 자의성과 부합하기 때문이다. 노자의 비상명이 갖는 성격을 부각하기 위해 공자의 '정명'과 비교하는 방법을 택했다. 이를 통해, 공자의 정명은 언어질서를 통해 예법을 회복하자는 주장임에 반해, 노자의 비상명은 기호의 자의성을 말한 것임을 드러냈다. 노자는 비상명을 통해 기호는 기표(signifiant)와 기의(signifie)가 본질적이고 필연적으로 결합되어 있지 않음을 드러냈다. 여기에서 더 나아가 기호의 자의성으로부터 언어질서는 해체될 수 있으며, 언어질서로 구축된 사회의 구조나 규범, 예법이라는 것도 해체될 수 있음을 보여준다. 결국 노자의 비상명은 제도로서 언어, 상징계로서 언어인 주나라의 언어질서에 저항하는 논리이자 해체의 논리이다. 이를 해명하기 위해, 세 가지 논증을 사용했다. 첫째는 '명'에 대한 중국 고대의 논의가 단순한 관직명과 사물의 명칭인 물명(物名)을 의미하는 것이 아니라, 한 사회의 제도와 법, 규범에 관한 논의였음을 해명하였다. 둘째, 언어 질서가 사회 제도이자 사회 구조임을 해명하는 논증을 소쉬르와 라캉의 말을 가져와 해명하였다. 소쉬르는 언어학의 탐구 대상이 한 사회의 제도와 규범, 법에 대한 탐구라고 말하고 있고, 라캉은 이를 상징계(the Symbolic)라고 말하고 있는 점을 가져와 논증하였다. 셋째, '비상명'이 기표와 기의의 자의적이고 임의적인 관계를 드러내는 중요한 용어임을 해명하였다. 소쉬르는 기호는 기표와 기의의 결합은 본질적이지 않고, 임의적이고 자의적이라고 한다. 노자의 비상명 역시 기표와 기의가 자의적인 결합임을 해명하였다. 이러한 논증을 통해 노자의 비상명이 제도로서 언어와 상징계로서 언어에 저항하고 이를 해체하는 논리임을 해명하였다.
본 논문에서는 효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법을 제안한다. 본 논문에서 제안한 기법의 독창성은 다음과 같다. 첫 번째로, 메모리 측면에서 기존 기법보다 약 27% 더 효율적인 새로운 feature map 추출 네트워크를 사용한다. 제안하는 네트워크는 딥러닝 네트워크의 중간까지 크기 축소를 수행하지 않아, 3D 포인트 클라우드 재구축에 필요한 중요한 정보가 유실되지 않았다. 축소되지 않은 이미지 크기로 인해 발생하는 메모리 증가 문제는 채널의 개수를 줄이고 딥러닝 네트워크의 깊이를 얕게 효율적으로 구성하여 해결하였다. 두 번째로, 2D 이미지의 고해상도 feature를 보존하여 정확도를 기존 기법보다 향상시킬 수 있도록 하였다. 축소되지 않은 이미지로부터 추출한 feature map은 기존의 방법보다 자세한 정보가 담겨있어 3D 포인트 클라우드의 재구축 정확도를 향상시킬 수 있다. 세 번째로, 촬영 정보를 필요로 하지 않는 divergence loss를 사용한다. 2D 이미지뿐만 아니라 촬영 각도가 학습에 필요하다는 사항은 그만큼 데이터셋이 자세한 정보를 담고 있어야 하며 데이터셋의 구축을 어렵게 만드는 단점이다. 본 논문에서는 추가적인 촬영 정보 없이 무작위성을 통해 정보의 다양성을 늘려 3D 포인트 클라우드의 재구축 정확도가 높아질 수 있도록 하였다. 제안하는 기법의 성능을 객관적으로 평가하기 위해 ShapeNet 데이터셋을 이용하여 비교 논문들과 같은 방법으로 실험한 결과, 본 논문에서 제안하는 기법의 CD 값이 5.87, EMD 값이 5.81 FLOPs 값이 2.9G로 산출되었다. 한편, CD, EMD 수치가 낮을수록, 재구축한 3D 포인트 클라우드가 원본에 근접하는 정확도가 향상된 결과를 나타낸다. 또한, FLOPs 수치가 낮을수록 딥러닝 네트워크에 필요한 메모리가 적게 소요되는 결과를 나타낸다. 따라서, 제안하는 기법의 CD, EMD, FLOPs 성능평가 결과가 다른 논문의 기법들보다 메모리 측면에서 약 27%, 정확도 측면에서 약 6.3% 향상된 결과를 나타내어 객관적인 성능이 입증되었다.
본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.