DOI QR코드

DOI QR Code

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures Against Beach Erosion III - Centering on the Effects of Random Waves Occurring During the Unit Observation Period, and Infra-Gravity Waves of Bound Mode, and Boundary Layer Streaming on the Sediment Transport

해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 III - 단위 관측 기간에 발생하는 불규칙 파랑과 구속모드의 외중력파, 경계층 Streaming이 횡단표사에 미치는 영향을 중심으로

  • 장병상 (서울시립대학교 토목공학과) ;
  • 조용준 (서울시립대학교 토목공학과)
  • Received : 2019.11.04
  • Accepted : 2019.12.23
  • Published : 2019.12.31

Abstract

In this study, we develop a new cross-shore sediment module which takes the effect of infra-gravity waves of bound mode, and boundary layer streaming on the sediment transport into account besides the well-known asymmetry and under-tow. In doing so, the effect of individual random waves occurring during the unit observation period of 1 hr on sediment transport is also fully taken into account. To demonstrate how the individual random waves would affect the sediment transport, we numerically simulate the non-linear shoaling process of random wavers over the beach of uniform slope. Numerical results show that with the consistent frequency Boussinesq Eq. the application of which is lately extended to surf zone, we could simulate the saw-tooth profile observed without exception over the surf zone, infra-gravity waves of bound mode, and boundary-layer streaming accurately enough. It is also shown that when yearly highest random waves are modeled by the equivalent nonlinear uniform waves, the maximum cross-shore transport rate well exceeds the one where the randomness is fully taken into account as much as three times. Besides, in order to optimize the free parameter K involved in the long-shore sediment module, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach from 2017.4.26 to 2018.4.20 as well, and proceeds to optimize the K by comparing the traced shoreline change with the measured one. Numerical results show that the optimized K for Mang-Bang beach would be 0.17. With K = 0.17, via yearly grand circulation process comprising severe erosion by consecutively occurring yearly highest waves at the end of October, and gradual recovery over the winter and spring by swell, the advance of shore-line at the northern and southern ends of Mang-Bang beach by 18 m, and the retreat of shore-line by 2.4 m at the middle of Mang-Bang beach can be successfully duplicated in the numerical simulation.

파형의 왜도, 저류 외에도 구속 모드의 외중력파, 경계층 streaming이 반영된 개선된 횡단표사 모듈이 제시되었으며, 개선된 모듈에서는 단위 관측기간 내에서 출현하기 마련인 개별 파랑도 고려된다. 이어 불규칙한 개별 파랑이 표사이송에 미치는 영향을 확인하기 위해 단조해안에서의 비선형 천수과정과 해변변형을 수치모의 하였다. 모의결과 최근 적용범위가 쇄파역으로 확대된 주파수 영역 Boussinesq Eq.은 쇄파역에서 흔히 관측되는 치근 모양의 파형, 구속 모드의 외중력파, 경계층 streaming의 모의가 가능한 것으로 판단된다. 또한 연 최대 고파랑이라는 해양환경을 등가 비선형 규칙파[Cnoidal wave]로 해석하는 경우 최대 횡단표사 이송률은 불규칙 파랑에서 관측되는 이송률의 세 배에 달할 정도로 지나치게 과다하게 모의되었으며, 이는 외빈과 원빈의 과다한 침식으로 이어졌다. 또한 연안 표사 이송과 관련된 free parameter K를 최적화하기 위해 맹방해빈의 2017.4.26부터 2018.4.20까지의 해안선 변화를 수치모의 하였으며, 최적화 과정에는 실측된 해안선 위치를 활용하였다. 모의 결과 맹방 표사계의 경우 최적화된 K는 0.17로 보이며, 이 경우 10월 말에 연이어 내습한 최대 고파랑에 의해 침식된 해안이 동절기와 춘절기의 너울에 의해 점진적으로 복원되는 대순환 과정을 거쳐 해안선이 맹방해안 남단과 북단에서는 18 m, 맹방 해안 중앙부에서는 2.4 m 내외로 전진하는 관측결과에 상당히 근접한 수치모의가 가능한 것을 확인하였다.

Keywords

References

  1. Bagnold, R.A. (1954). Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 225(1160), 49-63. https://doi.org/10.1098/rspa.1954.0186
  2. Bagnold, R.A. (1963). Mechanics of marine sedimentation. The Sea, Ideas and Observations, Vol. 3. The Earth beneath the Sea. Interscience, New York, pp. 507-528.
  3. Bailard, J.A. and Inman D.L. (1981). An energetics bedload model for a plane sloping beach: local transport. J. Geophys. Res., 86(C3), 2035-2043. https://doi.org/10.1029/JC086iC03p02035
  4. Cho, Y.J. (2019A). Numerical analysis of the beach stabilization effect of an asymmetric ripple mat. Journal of Korean Society of Coastal and Ocean Engineers, 31(4), 209-220. https://doi.org/10.9765/KSCOE.2019.31.4.209
  5. Cho, Y.J. (2019B). Grand circulation process of beach cusp and its seasonal variation at the Mang-Bang beach from the perspective of trapped mode Edge waves as the driving mechanism of beach cusp formation. Journal of Korean Society of Coastal and Ocean Engineers, 31(5), 265-277. https://doi.org/10.9765/KSCOE.2019.31.5.265
  6. Cho, Y.J. and Bae, J.H. (2019). On the feasibility of freak waves formation within the harbor due to the presence of Infra-gravity waves of bound mode underlying the ever-present swells. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 17-27. https://doi.org/10.9765/KSCOE.2019.31.1.17
  7. Cho, Y.J. and Kim, I.H. (2019). Preliminary study on the development of platform for the selection of an optimal beach stabilization measures against the beach erosion-centering on the yearly sediment budget of the Mang-Bang beach. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), 28-39. https://doi.org/10.9765/KSCOE.2019.31.1.28
  8. Cho, Y.J., Kim, I.H. and Cho, Y.J. (2019). Numerical analysis of the grand circulation process of Mang-Bang beach-centered on the shoreline change from 2017. 4. 26 to 2018. 4. 20. Journal of Korean Society of Coastal and Ocean Engineers, 31(3), 101-114. https://doi.org/10.9765/KSCOE.2019.31.3.101
  9. Cho, Y.J. and Lee, J.I. (2003). Forecasting of higher order spectral quantities of nonlinear random waves over surf zone. KSCE Journal of Civil Engineering, 7(3), 333-341. https://doi.org/10.1007/BF02831782
  10. Dean, R.G., Berek, E.P., Gable, C.G. and Seymour, R.J. (1982). Longshore transport determined by an efficient trap. Proceedings of 18th Coastal Engineering Conference, ASCE, Cape Town, pp. 954-968.
  11. Dean, R.G. and Dalrymple, R.A. (2002). Coastal Processes with Engineering Applications. Cambridge University Press, Cambridge, UK.
  12. Dodd, N., Stoker, A.M., Calvete, D. and Sriariyawat, A. (2008). On beach cusp formation. J. Fluid Mech., 597, 145-169. https://doi.org/10.1017/S002211200700972X
  13. Frelich, M.H. and Guza, R.T. (1984). Nonlinear effects on shoaling surface gravity waves. Phil. Trans. R. Soc. Lond. A311, 1-41.
  14. Guza, R.T. (1974). Excitation of edge waves and their role in the formation of beach cusps, University of California, San diego, Ph.D., 1974 Oceanography.
  15. Guza, R.T. and Thorton, E.B. (1985). Observations of surf beat. Journal of Geophysical Research: Oceans, 90(C2), 3161-3172. https://doi.org/10.1029/JC090iC02p03161
  16. Hallermeier, R.J. (1978). Uses for a calculated limit depth to beach erosion. Proceedings, Coastal Engineering, 1978, 1493-1512
  17. Hanson, H. (1989). Genesis-A generalized shoreline change numerical model. J. Coastal Res., 5(1), 1-27.
  18. Hanson, H. and Kraus, N.C. (1989). Genesis: Generalized Model for Simulating Shoreline Change. U.S. Army Coprs of Engineers, Coastal Engineering Research Center, CERC-MP-89-19.
  19. Hanson, H. and Larson, M. (1987). Comparison of Analytic and Numerical Solutions of the One-Line Model of Shoreline Change. Proc. Coastal Sediments '87, ASCE, 500-514.
  20. Komar, P.D. and Inman, D.L. (1970). Longshore sand transport on beaches. J. Geophys. Res., 75, 5914-5927. https://doi.org/10.1029/JC075i030p05914
  21. Kraus, N.C., Isobe, M., Igarashi, H., Sasaki, T.O. and Horikawa, K. (1982). Field experiments on longshore sand transport in the surf zone. Proceedings of 18th Coastal Engineering Conference, ASCE, Cape Town, pp. 970-988.
  22. Mase, H. and Kirby, J.T. (1992). Hybrid frequency-domain KdV equation for random wave transformation. Proc. 23th Int. Conf. Coast. Engrg. ASCE, Venice, Italy, 474-487.
  23. Meyer-Peter, E. and Müller, R. (1948). Formulas for bed-load transport. IAHR.