• Title/Summary/Keyword: random sample

Search Result 1,024, Processing Time 0.02 seconds

Estimation of Random Coefficient AR(1) Model for Panel Data

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.529-544
    • /
    • 1996
  • This paper deals with the problem of estimating the autoregressive random coefficient of a first-order random coefficient autoregressive time series model applied to panel data of time series. The autoregressive random coefficients across individual units are assumed to be a random sample from a truncated normal distribution with the space (-1, 1) for stationarity. The estimates of random coefficients are obtained by an empirical Bayes procedure using the estimates of model parameters. Also, a Monte Carlo study is conducted to support the estimation procedure proposed in this paper. Finally, we apply our results to the economic panel data in Liu and Tiao(1980).

  • PDF

Saddlepoint approximations for the ratio of two independent sequences of random variables

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.2
    • /
    • pp.255-262
    • /
    • 1998
  • In this paper, we study the saddlepoint approximations for the ratio of independent random variables. In Section 2, we derive the saddlepoint approximation to the probability density function. In Section 3, we represent a numerical example which shows that the errors are small even for small sample size.

  • PDF

Testing Homogeneity for Random Effects in Linear Mixed Model

  • Ahn, Chul H.
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.403-414
    • /
    • 2000
  • A diagnostic tool for testing homogeneity for random effects is proposed in unbalanced linear mixed model based on score statistic. The finite sample behavior of the test statistic is examined using Monte Carlo experiments examine the chi-square approximation of the test statistic under the null hypothesis.

  • PDF

A Note On L$_1$ Strongly Consistent Wavelet Density Estimator for the Deconvolution Problems

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.859-866
    • /
    • 2001
  • The problem of wavelet density estimation is studied when the sample observations are contaminated with random noise. In this paper a linear wavelet estimator based on Meyer-type wavelets is shown to be L$_1$ strongly consistent for f(x) with bounded support when Fourier transform of random noise has polynomial descent or exponential descent.

  • PDF

Testing Homogeneity of Errors in Unbalanced Random Effects Linear Model

  • Ahn, Chul H.
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.603-613
    • /
    • 2001
  • A test based on score statistic is derived for detecting homoscedasticity of errors in unbalanced random effects linear model. A small simulation study is performed to investigate the finite sample behaviour of the test statistic which is known to have an asymptotic chi-square distribution under the null hypothesis.

  • PDF

A Note on Central Limit Theorem for Deconvolution Wavelet Density Estimators

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.241-248
    • /
    • 2002
  • The problem of wavelet density estimation based on Shannon's wavelets is studied when the sample observations are contaminated with random noise. In this paper we will discuss the asymptotic normality for deconvolving wavelet density estimator of the unknown density f(x) when courier transform of random noise has polynomial descent.

Sample Size Determination Using the Stratification Algorithms with the Occurrence of Stratum Jumpers

  • Hong, Taekyong;Ahn, Jihun;Namkung, Pyong
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.297-311
    • /
    • 2004
  • In the sample survey for a highly skewed population, stratum jumpers often occur. Stratum jumpers are units having large discrepancies between a stratification variable and a study variable. We propose two models for stratum jumpers: a multiplicative model and a random replacement model. We also consider the modification of the L-H stratification algorithm such that we apply the previous models to L-H algorithm in determination of the sample sizes and the stratum boundaries. We evaluate the performances of the new stratification algorithms using real data. The result shows that L-H algorithm for the random replacement model outperforms other algorithms since the estimator has the least coefficient of variation.

계통표집법의 특성에 관한 연구

  • 박진우;김영원
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2000.11a
    • /
    • pp.157-168
    • /
    • 2000
  • In this paper we point out another advantage of systematic sampling over simple random sampling, which have not yet been spelled out in the literature. After a single sample is drawn by a sampling scheme, it is important to check whether the achived sample represents the population well or not. Therefore, a sampling scheme which avoids the possibility of selecting non-preferred samples is desirable. The simulation results are given to illustrate that, in the ordered population, the possibility of selecting non-preferred sample by systematic sampling is lower than that by simple random sampling.

  • PDF

A Comparison of Efficiency Estimation Methods via Monte Carlo Analysis (몬테카를로 분석에 의한 효율성 추정방법의 비교)

  • 최태성;김성호
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.117-128
    • /
    • 2002
  • In this Paper we investigate the performance of the five efficiency estimation methods which include the stochastic frontier model estimated by maximum likelihood (SFML), the stochastic frontier model estimated by corrected ordinary least squares (SFCOLS), the data envelopment analysis (DIA) model, the combined estimation of SFML and DEA (SFML + DEA), and the combined estimation of SFCOLS arid DIA (SFCOLS+ DEA) using Monte Carlo analysis. The results include: 1) SFML provides most accurate efficiency estimates for the sample sloe 150 or over,2) SFML+DEAor SFCOLS + DIA Perform better for the cases with sample sloe 25, 50, and low random errors, 3) SFCOLS performs better for the close with sample sloe 25, 50, and very high random errors.

CONDITIONAL LARGE DEVIATIONS FOR 1-LATTICE DISTRIBUTIONS

  • Kim, Gie-Whan
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.97-104
    • /
    • 1997
  • The large deviations theorem of Cramer is extended to conditional probabilities in the following sense. Consider a random sample of pairs of random vectors and the sample means of each of the pairs. The probability that the first falls outside a certain convex set given that the second is fixed is shown to decrease with the sample size at an exponential rate which depends on the Kullback-Leibler distance between two distributions in an associated exponential familiy of distributions. Examples are given which include a method of computing the Bahadur exact slope for tests of certain composite hypotheses in exponential families.

  • PDF