• 제목/요약/키워드: random road excitation

검색결과 9건 처리시간 0.021초

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

WAVELET ANALYSIS OF VEHICLE NONSTATIONARY VIBRATION UNDER CORRELATED FOUR-WHEEL RANDOM EXCITATION

  • Wang, Y.S.;Lee, C.M.;Zhang, L.J.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.257-268
    • /
    • 2004
  • The wavelet analysis method is introduced in this paper to study the nonstationary vibration of vehicles. A new road model, a so-called time domain correlated four-wheel road roughness, which considers the coherence relationships between the four wheels of a vehicle, has been newly developed. Based on a vehicle model with eight degrees of freedom, the analysis of nonstationary random vibration responses was carried out in a time domain on a computer. Verification of the simulation results show that the proposed road model is more accurate than previous ones and that the simulated responses are credible enough when compared with some references. Furthermore, by taking wavelet analysis on simulated signals, some substantial rules of vehicle nonstationary vibration, such as the relationship between each vibration level, and how the vibration energy flows on a time-frequency map, beyond those from conventional spectral analysis, were revealed, and these will be of much benefit to vehicle design.

A STUDY ON NONSTATIONARY RANDOM VIBRATION OF A VEHICLE IN TIME AND FREQUENCY DOMAINS

  • Zhang, L.J.;Lee, C.M.;Wang, Y.S.
    • International Journal of Automotive Technology
    • /
    • 제3권3호
    • /
    • pp.101-109
    • /
    • 2002
  • A time domain method for solving nonstationary random vibration caused by vehicle acceleration is first proposed in which a time changing model is established for representing nonstationary excitation of a rough road. Furthermore a novel frequency domain method called the transient power spectral density with spatial frequency (TPSD) is presented to obtain a response of vehicle system in frequency domain. This method has been proved to be valid by comparing numerical results with the exact solution.

Monte Carlo Simulation of MR Damper Landing Gear Taxiing Mode under Nonstationary Random Excitation

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • 항공우주시스템공학회지
    • /
    • 제14권4호
    • /
    • pp.10-17
    • /
    • 2020
  • When an aircraft is taxiing, excitation force is applied according to the shape of the road surface. The sprung mass acceleration caused by the excitation of the road surface negatively affects the feeling of boarding. This paper addresses the verification process of the semi-active control method applied to improve the feeling of boarding. The Magneto-Rheological damper landing gear model is employed alongside the control method. It is a Oleo-Pneumatic damper filled with a fluid having the characteristics of increasing yield stress when subjected to a magnetic field. The control method involves verifying Skyhook Control Type2 developed by Skyhook control. The Sinozuka white noise model that considers runway characteristics was employed for the road surface in the simulation. The runway road surface obtained through this model has stochastic characteristics, so the dynamic characteristics were analyzed by applying Monte-Carlo simulation. A dynamic analysis was conducted by co-simulating the landing gear model made by RecurDyn and the control method designed by Simulink. Simulation results show that the Skyhook Control Type2 method has the best control effect in the low speed range compared to the passive type (without control) and skyhook control.

윤거, 축거, 차축 하중 분포가 트랙터 진동에 미치는 영향 (Effects of Tread, Wheelbase and Axle Load Distribution on Tractor Vibrations)

  • 조춘환;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제21권3호
    • /
    • pp.293-305
    • /
    • 1996
  • Effects on the tractor vibrations of tread, wheelbase and axle load distribution were analyzed by using mathematical models of tractor and random road surface. A 4 degrees of freedom tractor model was developed to predict the bounce, pitch and roll motions of tractor. The front axle which is constrained to roll with respect to tractor body was also included in the model. A random road profile was generated and used as an excitation input to the tractor. Output vibrations of the model were predicted and analyzed by a computer simulation method. In general, longer tread tends to reduce rolling and longer wheelbase does bouncing and pitching motions. Tractor vibrations were minimum when the ratio of front to rear axle loads was in the range of 30:70-35:65. Sensitivity analysis showed that rolling and pitching motions most sensitively varied with changes in tread and wheelbase while bouncing motion did with the location of mass center.

  • PDF

차량 출력 토크 측정 시스템의 시스템 식별 (System Identification of In-situ Vehicle Output Torque Measurement System)

  • 김기우
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.85-89
    • /
    • 2012
  • This paper presents a study on the system identification of the in-situ output shaft torque measurement system using a non-contacting magneto-elastic torque transducer installed in a vehicle drivline. The frequency response (transfer) function (FRF) analysis is conducted to interpret the dynamic interaction between the output shaft torque and road side excitation due to the road roughness. In order to identify the frequency response function of vehicle driveline system, two power spectral density (PSD) functions of two random signals: the road roughness profile synthesized from the road roughness index equation and the stationary noise torque extracted from the original torque signal, are first estimated. System identification results show that the output torque signal can be affected by the dynamic characteristics of vehicle driveline systems, as well as the road roughness.

ER 현수장치를 갖는 궤도 차량의 진동제어 (II);궤도차량의 모델링 및 제어 (Vibration Control of a Tracked Vehicle with ER Suspension Units (II);Modeling and Control of a Tracked Vehicle)

  • 박동원;최승복;강윤수;서문석;신민재;최교준
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1960-1969
    • /
    • 1999
  • This paper presents dynamic modeling and controller design of a tracked vehicle installed with the double rod type ERSU(electro-rheological suspension unit). A 16 degree-of-freedom model for the tracked vehicle is established by Lagrangian method followed by the formulation of a new sky-ground hook controller. This controller takes account for both the ride quality and the steering stability. The weighting parameter between the two performance requirements is adopted to adjust required performance characteristics with respect to the operation conditions such as road excitation. The parameter is appropriately determined by employing a fuzzy algorithm associated with the vehicle motion. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control system. Acceleration values at the driver's seat are analyzed under bump road profile, while frequency responses of vertical acceleration are investigated under random road excitation.

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

노면가진을 받는 승용차의 진동해석 (Analysis of Vertical Vibration of a Passenger Car due to Road Excitation)

  • 최영휴;김원석;민현기;이장무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1990년도 추계학술대회논문집; 한양대학교, 서울; 24 Nov. 1990
    • /
    • pp.143-147
    • /
    • 1990
  • 자동차는 주행시에 노면가진으로 인하여 진동을 받게 되는 데 이러한 진동 은 운전자의 승차감을 저하시킬 뿐만 아니라 화물과 차량 부품을 파손시키 는 원인이 되기도 한다. 노면가진력은 주로 현가장치를 통하여 차량에 전달 되어 차량의 진동을 유발하게 되므로 승차감을 향상시키려면 노면가진을 효 과적으로 차단할 수 있도록 현가장치를 설계하여야 한다. 이를 위하여 본 논 문에서는 차량을 현가장치의 형식에 따라 3가지 종류로 구분한 다음 각각을 12자유도로 모델링하여 노면이 불규칙(random)한 도로를 주행할 때의 승용 차의 진동을 해석하고, 현가스프링의 강성과 쇼크 압소바의 감쇠 값이 자체 수직 가속도 유효치(rms value)와 현가장치 유효행정(rms stroke length)에 미치는 영향을 분석하였다. 차량의 운동방정식은 현가장치의 비선형 특성을 고려하였기 때문에 미소 각 운동의 가정에도 불구하고 비선형 방정식이 된 다. 운동 방정식의 해는 4차 Runge-Kutta 적분법을 사용하여 수치해석으로 구하였다.

  • PDF