Purpose : This paper introduces a new three dimensional magnetic Resonance Image classification which is based on Mar kov Random Field-Gibbs Random Field with a line model. Material and Methods : The performance of the Gibbs Classifier over a statistically heterogeneous image can be improved if the local stationary regions in the image are disassociated from each other through the mechanism of the interaction parameters defined at the local neighborhood level. This usually involves the construction of a line model for the image. In this paper we construct a line model for multisignature images based on the differential of the image which can provide an a priori estimate of the unobservable line field, which may lie in regions with significantly different statistics. the line model estimated from the original image data can in turn be used to alter the values of the interaction parameters of the Gibbs Classifier. Results : MRF-Gibbs classifier for volumetric MR images is developed under the condition that the domain of the image classification is $E^{3}$ space rather thatn the conventional $E^{2}$ space. Compared to context free classification, MRF-Gibbs classifier performed better in homogeneous and along boundaries since contextual information is used during the classification. Conclusion : We construct a line model for multisignature, multidimensional image and derive the interaction parameter for determining the energy function of MRF-Gibbs classifier.
Transactions of the Korean Society of Mechanical Engineers A
/
v.23
no.7
s.166
/
pp.1139-1146
/
1999
Reliability analysis of structures based on fracture mechanics requires knowledge on statistical characteristics of the parameter C and m in the fatigue crack growth law, $da/dN=C({\Delta}K)^m$. The purpose of the present study is to investigate if it is possible to predict fatigue crack growth rate by only the fluctuation of the parameter C. In this study, Paris-Erdogan law is adopted, where the author treat the parameter C as random and m as constant. The fluctuation of crack growth rate is assumed only due to the parameter C. The growth resistance coefficient of material to fatigue crack growth (Z=1/C) was treated as a spatial stochastic process, which varies randomly on the crack path. The theoretical crack growth rates at various stress intensity factor range are discussed. Constant ${\Delta}K$ fatigue crack growth tests were performed on the structural steel, SM45C. The experimental data were analyzed to determine the autocorrelation function and Weibull distributions of the fatigue crack growth resistance. And also, the effect of the parameter m of Paris' law due to variation of fatigue crack growth resistance was discussed.
Kim, Ju Sung;Lee, Sung Duck;Jo, Na Rae;Ham, In Suk
The Korean Journal of Applied Statistics
/
v.29
no.1
/
pp.257-266
/
2016
Random Coefficient Autoregressive models (RCA) have attracted increased interest due to the wide range of applications in biology, economics, meteorology and finance. We consider an RCA as an appropriate model for non-linear properties and better than an AR model for linear properties. We study the methods of RCA parameter estimation. Especially we proposed the special case that an random coefficient ${\phi}(t)$ has the initial value ${\phi}(0)$ in the RCA model. In practical study, we estimated the parameters and compared Prediction Error Sum of Squares (PRESS) criterion between AR and RCA using Korean Mumps data.
Journal of The Korean Society of Agricultural Engineers
/
v.54
no.3
/
pp.55-63
/
2012
Soil properties are not random values which is represented by mean and standard deviation but show spatial correlation. Especially, soils are highly variable in their properties and rarely homogeneous. Thus, the accuracy and reliability of probabilistic analysis results is decreased when using only one random variable as design parameter. In this paper, to consider spatial variability of soil property, one-dimensional random fields of coefficient of consolidation ($C_v$) were generated based on a Karhunen-Loeve expansion. A Latin hypercube Monte Calro simulation coupled with finite difference method for Terzaghi's one dimensional consolidation theory was then used to probabilistic analysis. The results show that the failure probability is smaller when consider spatial variability of $C_v$ than not considered and the failure probability increased when the autocorrelation distance increased. Thus, the uncertainty of soil can be overestimated when spatial variability of soil property is not considered, and therefore, to perform a more accurate probabilistic analysis, spatial variability of soil property needed to be considered.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.3
/
pp.285-291
/
2022
The number of people enrolling in universities is rising due to the simplicity of applying and the benefit of earning a bachelor's degree. However, the on-time graduation rate has declined since plenty of students fail to complete their courses and take longer to get their diplomas. Even though there are various reasons leading to the aforementioned problem, it is crucial to emphasize the cause originating from the management and care of learners. In fact, understanding students' difficult situations and offering timely Number of Test data and advice would help prevent college dropouts or graduate delays. In this study, we present a machine learning-based method for early detection at-risk students, using data obtained from graduates of the Faculty of Information Technology, Dainam University, Vietnam. We experiment with several fundamental machine learning methods before implementing the parameter optimization techniques. In comparison to the other strategies, Random Forest and Grid Search (RF&GS) and Random Forest and Random Search (RF&RS) provided more accurate predictions for identifying at-risk students.
Journal of Korean Society of Industrial and Systems Engineering
/
v.28
no.2
/
pp.146-151
/
2005
Some distributions have been used for diagnosing the lead time demand distribution in inventory system. In this paper, we describe the negative binomial distribution as a suitable demand distribution for a specific retail inventory management application. We here assume that customer order sizes are described by the Poisson distribution with the random parameter following a gamma distribution. This implies in turn that the negative binomial distribution is obtained by mixing the mean of the Poisson distribution with a gamma distribution. The purpose of this paper is to give an interpretation of the negative binomial demand process by considering the sources of variability in the unknown Poisson parameter. Such variability comes from the unknown demand rate and the unknown lead time interval.
The Transactions of the Korean Institute of Electrical Engineers P
/
v.58
no.2
/
pp.164-171
/
2009
This paper presents new learning algorithm of dynamic Bayesian networks (DBN) by means of constrained least square (LS) estimation algorithm and gradient descent method. First, we propose constrained LS based parameter estimation for a Markov chain (MC) model given observation data sets. Next, a gradient descent optimization is utilized for online estimation of a hidden Markov model (HMM), which is bi-linearly constructed by adding an observation variable to a MC model. We achieve numerical simulations to prove its reliability and superiority in which a series of non stationary random signal is applied for the DBN models respectively.
Journal of information and communication convergence engineering
/
v.9
no.5
/
pp.539-544
/
2011
In this paper, a parameter optimization method of RIO-DC (RED (Random Early Detection) with In and Out-De-Coupled Queues) scheme for Assured Service (AS) in Differentiated Services (DiffServ) is proposed. In order to optimize QoS (Quality of Service) performance of the RIO-DC policy for AS in terms of maximum tolerable latency, link utilization, fairness, etc., we should design router nodes with proper RIO-DC operating parameter values. Therefore, we propose a RIO-DC configuration method and the admission control criterion, considering the allocated bandwidth to each subclass and the corresponding buffer size, to increase throughput for In-profile traffic and link utilization. Simulation results show that RIO-DC with the proposed parameter values guarantees QoS performance comparable with the RIO scheme and it improves fairness between AS flows remarkably.
Rheological properties of chitosan solutions were investigated as a function of polymer concentration. The viscosity curves for chitosan solutions consisted of two distinct viscosity regions, the Newtonian zero-shear viscosity (η$_{0}$) region and the shear rate dependent apparent viscosity (η$_{app}$) region. The shear rate dependence of viscosity was more clearly observed at higher chitosan concentrations. The critical coil overlap parameter (C*〔η〕) was determined to be approximately 3.2 from a plot of zero-shear specific viscosity η$_{sp,0}$ vs coil overlap parameter (C〔η〕), which was lower than C〔η〕4.0 reported for other random coil polysaccharides. It was also found that the slope of η$_{sp,0}$ vs C〔η〕 was 3.9 at concentrated C〔η〕>C*〔η〕domain, while 1.2 at dilute C〔η〕$_{0}$ ${\gamma}$/${\gamma}$$_{0.8}$ relation.ion.n.n.
Let A(n) and B(n) be sequences of $m \times m$ random matrices with a joint asymptotic distribution as $n \to \infty$. The asymptotic distribution of the ordered roots of $$\mid$A(n) - f B(n)$\mid$ = 0$ depends on the multiplicity of the roots of a determinatal equation involving parameter roots. This paper treats the asymptotic distribution of the roots of the above determinantal equation in the case where some of parameter roots are zero. Furthermore, we apply our results to deriving the asymptotic distributions of the eigenvalues of the MANOVA matrix in the noncentral case when the underlying distribution is not multivariate normal and some parameter roots are zero.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.