본 논문에서는 HIPERLAN/2(HIgh PErformance Radio Local Area Network type 2)의 랜덤 액세스 과정에서 채널 환경을 고려함으로 처리 성능을 높이고 전송 지연을 개선한 적응적 랜덤 액세스 기법(ARAH : Adaptive Random Access algorithm for HIPERLAN/2)을 제안하고 기존 방식에 비해 성능이 향상됨을 검증하였다. 본 논문에서는 HIPERLAN/2에서 채널의 상태에 따라 OFDM(Orthogonal frequency Division Multiplexing) modulation scheme을 기반으로 제공하는 7가지 PHY(Physical) mode를 Good 그룹과 Bad 그룹으로 양분하고, Good 그룹에 속하는 단말들에게 랜덤 액세스 과정에서 우선순위를 갖게 함으로써 처리율을 높이도록 하는 방식을 취하고 있다. ARAH 방식에 대하여 성능을 평가한 결과, 처리율과 전송 지연에 대해 성능이 향상됨을 보이고 있다.
보안 관련 설계 기술 개발에 대해서는 국내와 국외의 현황이 거의 차이가 나지 않는다. 현재 2048 비트 RSA 처리 모듈이 개발되고 있는 추세이긴 하지만 처리 비트폭이 넓은 이유로 연산 처리 속도가 빠르지 않아 효율적 자원을 소모하면서 고속으로 동작되는 RSA 처리부의 설계가 필요하다. RNG (Random Number Generator) 개발 측면에서는 PRNG (Pseudo Random Number Generator)에서 TRNG (True Random Number Generator)로 바뀌는 추세이며 소면적 고속의 전용 RNG가 요구된다. 칩 레벨 보안 관련해서는 국내외 제조사별로 특허권 침해를 받지 않는 보안 칩 고유의 안전장치를 개발하고 있으며, 독자적인 칩 레벨의 안전장치가 필요하다.
본 논문은 Even-Mansour 암호에 대해 안전성 약화 없이 키 사이즈를 줄이는 방법에 대해 다룬다. Even과 Mansour는 랜덤 순열 모델에서 랜덤 순열 P와 두 개의 키를 이용하여 평문 M을 암호화하는 기법($C=k_2\bigoplus P(M\bigoplus k_1)$)을 제안하였다. ASIACRYPT 2004에서 Gentry와 Ramzen은 4 라운드의 Feistel 구조를 이용하여 Even-Mansour 모델의 랜덤 순열을 랜덤 함수로 대치한 새로운 모델을 제안하고 안전성을 증명하였다. 본 논문에서는 Gentry-Ramzen 모델에 필요한 키 사이를 반으로 줄이는 방법을 살펴보고 제안한 방법에 대한 안전성을 랜덤 함수 모델에서 증명한다.
본 연구의 목적은 Neural Network Regression 모델을 활용하여 선박의 가치평가 모델을 개발하는 것이다. 가치평가의 대상은 중고 VLCC선이며, 선행연구를 통해 선박의 가치 변화를 유발하는 주요 요인들을 선별하여 변수를 설정하고, 2000년 1월부터 2020년 8월까지의 해당 데이터를 확보하였다. 변수의 안정성을 판단하기 위해 다중 공선성 검사를 수행하여 최종적으로 6개의 독립변수와 1개의 종속변수를 선정하고 연구 구조를 설계하였다. 이를 바탕으로 Linear Regression, Neural Network Regression, Random Forest Algorithm을 활용하여 총 9개의 시뮬레이션 모델을 설계하였다. 또한 각 모델간의 비교검증을 통해 평가결과의 정확성을 제고시켰다. 평가 결과, VLCC실제값과의 비교를 통해 2층으로 구성된 Hidden Layer의 Neural Network Regression 모델이 가장 정확도가 높은 것으로 나타났다. 본 연구의 시사점은 첫째, 기존 정형화된 평가기법에서 벗어나 기계학습기반 모델을 선박가치평가에 적용하였다는 점이다. 둘째, 해운시장 변화요인을 동태적 관점에서 분석하고 예측함으로써 연구결과의 객관성을 제고시켰다고 할 수 있다.
대규모 병렬처리가 가능하고 칩당 뉴론 집적도가 높은 펄스형 디지털 다계층 신경망 구조를 제안하였다. 제안된 신경망에서는 대수적인 신경망연산이 의사-랜덤 펄스 시퀀스(pseudo-random pulse sequences)와 단순 디지털 논리 게이트를 이용하여 확률적 프로세스로 대치되었다. 확률적 프로세스의 결과로 나타나는 신경망 연산의 통계적 모델을 제시하였으며 이를 바탕으로 랜덤잡음의 영향과 연산의 정확도를 분석하였다. 이진인식 문제를 적용하여 제안된 신경망의 성능을 평가하고 제시한 통계적 분석결과의 정당성을 검증하였다. Gate 레벨과 register transfer 레벨로 기술된 신경망의 VHDL 모델의 시뮬레이션 결과는 개발된 통계적모델로 예측된 인식추정치와 실제 인식률이 거의 일치함을 보였으며, 또한 숫자인식률에 있어서도 일반 Back-Propagation 신경망의 인식률과 거의 차이가 없음을 보였다.
Let ${X_n,\;n\geq1}$ be a sequence of independent identically distributed (i.i.d.) random variables (r.vs.), defined on a probability space ($\Omega$,A,P), and let ${N_n,\;n\geq1}$ be a sequence of positive integer-valued r.vs., defined on the same probability space ($\Omega$,A,P). Furthermore, we assume that the r.vs. $N_n$, $n\geq1$ are independent of all r.vs. $X_n$, $n\geq1$. In present paper we are interested in asymptotic behaviors of the random sum $S_{N_n}=X_1+X_2+\cdots+X_{N_n}$, $S_0=0$, where the r.vs. $N_n$, $n\geq1$ obey some defined probability laws. Since the appearance of the Robbins's results in 1948 ([8]), the random sums $S_{N_n}$ have been investigated in the theory probability and stochastic processes for quite some time (see [1], [4], [2], [3], [5]). Recently, the random sum approach is used in some applied problems of stochastic processes, stochastic modeling, random walk, queue theory, theory of network or theory of estimation (see [10], [12]). The main aim of this paper is to establish some results related to the asymptotic behaviors of the random sum $S_{N_n}$, in cases when the $N_n$, $n\geq1$ are assumed to follow concrete probability laws as Poisson, Bernoulli, binomial or geometry.
동기식통신망의 클럭들에서 발생되는 위상시간에러(phase time error)의 성분은 주로 플리커잡음(flicker noise)및 랜덤워크잡음(random-walk noise)이다. 본 논문에서는 먼저 주파수 안정도에 대한 측정표준을 설명하였다. 그리고 백색잡음으로부터 플리커잡음 및 랜덤워크잡음을 디지털 컴퓨터상에서 생성시킬 수 있는 알고리즘을 소개하였는데, 특히 플리커잡음에 대해서는 단수(stage number) N, 시정수비(time constant ratio) K와 플리커잡음생성대역폭의 관계를 예를 들어 규명하였다. 동기식망에서 발생되는 위상시간에러를 실제 측정한 결과에 따라서 이 알고리즘을 이용하여 컴퓨터로 클럭의 위상시간에러를 시뮬레이션하였다.
최근 Flickr, Facebook, Cyworld 처럼 사진 공유를 기반으로 하는 소셜 웹 서비스의 성공과 발달로 얼굴 검출/인식 기술을 이러한 서비스에 접목하려는 다양한 시도가 진행되고 있다. 그러나 인식률 향상에만 초점을 맞춘 기존의 일관처리 기반의 연구들은 수백만의 이용자가 수시로 접근하는 서비스에 적용하기 어렵다. 본 논문에서는 시간에 따라 증가하는 거대한 얼굴 영상 데이터베이스를 효과적으로 분류하기 위해 랜덤 사상(Random Projectio, RP) 비선형 회귀(Non-linear Regression) 그리고 REST(REpresen tational State Transfer) 규약을 사용해 새로운 증가적 얼굴 어노테이션 방법을 제안하고자 한다. 다양한 비교실험 결과에서 제안된 방법은 향상된 인식률과 낮은 계산 복잡도 기록했다. 따라서 제안된 방법은 대규모 웹서비스에 적합한 열굴 어노테이션 알고리즘이다.
A new technique is presented to construct predictive models of plasma etch processes. This was accomplished by combining a backpropagation neural network (BPNN) and a random generator (RC). The RG played a critical role to control neuron gradients in the hidden layer, The predictive model constructed in this way is referred to as a randomized BPNN (RG-BPNN). The proposed scheme was evaluated with a set of experimental plasma etch process data. The etch process was characterized by a 2$^3$ full factorial experiment. The etch responses modeled are 4, including aluminum (Al) etch rate, profile angle, Al selectivity, and do bias. Additional test data were prepared to evaluate model appropriateness. The performance of RC-BPNN was evaluated as a function of the number of hidden neurons and the range of gradient. for given range and hidden neurons, 100 sets of random neuron gradients were generated and among them one best set was selected for evaluation. Compared to the conventional BPNN, the proposed RC-BPNN demonstrated about 50% improvements in all comparisons. This illustrates that the RG-BPNN of multi-valued gradients is an effective way to considerably improve the predictive ability of current BPNN of single-valued gradient.
In this study, we examine the applicability of an artificial neural network(ANN) for filtering underwater random noise and for identifying underlying signals taken from noisy environment. The approach is to find a way of compressing the input data and then decompressing it using an ANN as in image compressing process. It is well known that random signal is hard to compress while ordered information is not. The use of a limited number of processing elements(PEs) in the hidden layer of an Ann ensures that some of the noise would be removed in the reconstruction process. Two types of the signals, synthesized and measured, are used to examine the effectiveness of the ANN-based filter. After training process is completed, the ANN successfully extracts the underlying signals form the synthesized or measured noisy signals. In particular, compared with the results form without filtering or moving averaged, the ANN-based filter gives much better spectrograms to identify underlying signals from the measured noisy data. This filtering process is achieved without using and kind of highly accurate signal processing technique. More experimentation needs to be followed to develop the ANN-based filtering technique to the level of complete understanding.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.