• Title/Summary/Keyword: random generation

Search Result 596, Processing Time 0.029 seconds

Effects of Number of Incomplete Data in Latest Generation on the Breeding Value Estimated by Random Regression Model (임의회귀 모형 사용시 마지막 세대의 불완전한 기록이 추정육종가에 미치는 효과)

  • ;;;;;;;;Salces, A.J.
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.143-150
    • /
    • 2006
  • The data were collected in the dairy herd improvement program from January 2000 to July 2005. Test data included 825,157 records of first parity and animals with both parents known were included. This study aimed to describe the effect of incomplete lactation records of latest generation to the change in sire's breeding value using Random Regression model (RRM) in genetic evaluation. Estimation of genetic parameter and breeding value for sire used REMLF90 and BLUPF90 program. The phenotypic value on the number of test day records between group TD11, TD8, TD5, TD2 showed no large differences. For all the group heritability of test day milk yield range from 0.30 to 0.36. However TD2 group showed low heritability the least test day recode on the latest generation. The correlation of above 50% between test day and TD11(0.610), TD8(0.616), TD5(0.661) and TD2(0.682) with different records in latest generation. Sire's rank of breeding value varied widely depending on the records on the number of lactation from start to the latest generation. Study showed that change in breeding value ranked if daughter's test recode more so it should have at least 5 test day records. The use of RRM in dairy cattle genetic evaluation would be desirable if complete lactation records for latest generation daughters of young bulls when selection for proven bulls. Random Regression model (RRM) require at least 5 test-day lactation recode.

An Application of secondary wound type Induction machine for random wave generation sysytem (이차 권선형 유도기의 불규칙입력에너지 발전시스템에의 적용)

  • Kim, Moonhwan;Kim, Soon-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.771-774
    • /
    • 2009
  • In this paper, the secondary wound type induction machiner was applied to random wave input generation system. It is necessary to know the transient sate of the induction machine, for getting the stabilized power from the random wave input. Here the two-axis theory is adopted and the primary and secondary variables like as current, voltages, power were calculated. From the fluctuating natural power, we can get the CVCF output power by using microprocessor control VSI.

  • PDF

Noise Harmonic Reduction of IPMSM Based Next Generation High Speed Railway System using RCF-PWM (RCF-PWM을 이용한 IPMSM 기반 차세대 고속철도 구동 인버터 시스템의 소음원 고조파 저감)

  • Kim, Sung-Je;Jin, Kang-Hwan;Lee, Sang-Hyun;Kim, Yoon-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.244-250
    • /
    • 2012
  • In this paper, The next Generation High Speed Railway Inverter system using RCF-PWM(Random Carrier Frequency Pulse Width Modulation) was developed to reduce electromagnetic noise. RCF-PWM method is randomized the switching frequency in the range between Semiconductor switching devices' maximum switching frequency and minimum switching frequency, Simulation program has been built using MATLAB/Simulink to verify the validity of study. Finally, the simulation results of Next Generation High Speed Railway inverter system using the RCF method was compared with the conventional SVPWM method.

Implementation and characterization of flash-based hardware security primitives for cryptographic key generation

  • Mi-Kyung Oh;Sangjae Lee;Yousung Kang;Dooho Choi
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.346-357
    • /
    • 2023
  • Hardware security primitives, also known as physical unclonable functions (PUFs), perform innovative roles to extract the randomness unique to specific hardware. This paper proposes a novel hardware security primitive using a commercial off-the-shelf flash memory chip that is an intrinsic part of most commercial Internet of Things (IoT) devices. First, we define a hardware security source model to describe a hardware-based fixed random bit generator for use in security applications, such as cryptographic key generation. Then, we propose a hardware security primitive with flash memory by exploiting the variability of tunneling electrons in the floating gate. In accordance with the requirements for robustness against the environment, timing variations, and random errors, we developed an adaptive extraction algorithm for the flash PUF. Experimental results show that the proposed flash PUF successfully generates a fixed random response, where the uniqueness is 49.1%, steadiness is 3.8%, uniformity is 50.2%, and min-entropy per bit is 0.87. Thus, our approach can be applied to security applications with reliability and satisfy high-entropy requirements, such as cryptographic key generation for IoT devices.

Generation of Pseudo-Random Load Waves and Preliminary Study on Surface Fatigue Crack Growth under Random Loading (유사랜덤하중파형 작성과 이를 이용한 랜덤하중하의 표면피로 균열진전에 관한 기초적 검토)

  • 송지호;김종한;김정엽
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.125-134
    • /
    • 1989
  • Pseudo-random load waves for fatigue testing were generated by personal computer simulation and preliminary study was performed on the growth behavior of surface fatigue crack under random ladings. The closure behavior and growth rates of surface fatigue crack were significantly influenced by the characteristics of random waves. It was also found that the growth rates of surface fatigue crack under random loadings could not be always described by the effective stress intensity factor based on the concept of crack closure.

Multi-operation-based Constrained Random Verification for On-Chip Memory

  • Son, Hyeonuk;Jang, Jaewon;Kim, Heetae;Kang, Sungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.423-426
    • /
    • 2015
  • Current verification methods for on-chip memory have been implemented using coverpoints that are generated based on a single operation. These coverpoints cannot consider the influence of other memory banks in a busy state. In this paper, we propose a method in which the coverpoints account for all operations executed on different memory banks. In addition, a new constrained random vector generation method is proposed to reduce the required random vectors for the multi-operation-based coverpoints. The simulation results on NAND flash memory show 100% coverage with 496,541 constrained random vectors indicating a reduction of 96.4% compared with conventional random vectors.

Secret Key Generation from Common Randomness over Ultra-wideband Wireless Channels

  • Huang, Jing Jing;Jiang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3557-3571
    • /
    • 2014
  • We develop a secret key generation scheme using phase estimation in ultra-wideband (UWB) wireless fading channels. Based on the reciprocity theorem, two terminals extract the phase of the channel as a common random source to generate secret bits. Moreover, we study the secret key rate by a pair of nodes observing correlated sources and communicating to achieve secret key agreement over public communication channels. As our main results, we establish a more practical upper bound from Cramer-Rao bound (CRB) and compare it with a universally theoretical upper bound on the shared maximum key rate from mutual information of correlated random sources. Derivation and numerical examples are presented to demonstrate the bound. Simulation studies are also provided to validate feasibility and efficiency of the proposed scheme.

The Output Power Control in the Sea-Wave Input Generation System by the Secondary Excited System (이차여자시스템에 의한 파력발전시스템의 출력제어)

  • 김문환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1013-1018
    • /
    • 2003
  • This paper deals with the secondary excited induction generator applied to random energy input generation system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled inverter connected to the secondary windings supplies the secondary current with slip frequency. For testing the appropriateness of this paper, the input torque simulator, which generate the statistically varied wave power input torque in the laboratory to drive the secondary excited induction generator, are constructed. The experimental and numerical results show the advantage of secondary excited induction generator system for the random input wave generation system.

Random Pattern Generation Algorithm for Light Guides using Molecular Dynamics Model (분자동역학 모델을 이용한 도광판 랜덤패턴 생성 알고리즘)

  • Lee, Ji Young;Park, Seungkyung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.25-29
    • /
    • 2019
  • Microstructure pattern generation on light guides in backlight unit (BLU) is an essential process for designing flat panel display, but efficient designing algorithm is still limited to achieve uniform luminescence while maintaining fully random distribution to avoid interference effects. In this study, a molecular dynamics model based pattern generation algorithm has been developed. The proposed algorithm allows a fast and efficient distribution of patterns at specified density within the user-defined computational cells, and its efficiency and performance has been demonstrated with sample cases.

Efficient Congestion Control Technique of Random Access and Grouping for M2M according to User Type on 3GPP LTE-A s (3GPP LTE-A 시스템 기반 사용자 특성에 따른 효율적 Random Access 과부하 제어 기술 및 M2M 그룹화)

  • Kim, Junghyun;Ji, Soonbae;You, Cheolwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.48-55
    • /
    • 2015
  • This paper studies how to solve a problem caused by M2M terminals sending a few data based on $3^{rd}$ Generation Partnership Project(3GPP) Long Term Evolution-Advanced(LTE-A) system and then it is analyzed, proposed, and introduced into the techniques. Especially, it is introduced solution for the lack of Random Access Channel and an increasing number of latency caused by countless M2M devices. It is proposed the technology for M2M grouping as well as allowable access probability according to user type. As it decreases the number of terminal by grouping M2M devices to try random access at PRACH, it can be reduced collision between Cellular users and M2M devices. So, it is proved that the proposed mechanism can solve the increasing average latency of random access on system coexisting Cellular users and M2M devices through simulations.