• Title/Summary/Keyword: random fields

Search Result 415, Processing Time 0.026 seconds

The probabilistic Analysis of Degree of Consolidation by Spatial Variability of Cv (압밀계수의 공간변동성에 따른 압밀도의 확률론적 해석)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.55-63
    • /
    • 2012
  • Soil properties are not random values which is represented by mean and standard deviation but show spatial correlation. Especially, soils are highly variable in their properties and rarely homogeneous. Thus, the accuracy and reliability of probabilistic analysis results is decreased when using only one random variable as design parameter. In this paper, to consider spatial variability of soil property, one-dimensional random fields of coefficient of consolidation ($C_v$) were generated based on a Karhunen-Loeve expansion. A Latin hypercube Monte Calro simulation coupled with finite difference method for Terzaghi's one dimensional consolidation theory was then used to probabilistic analysis. The results show that the failure probability is smaller when consider spatial variability of $C_v$ than not considered and the failure probability increased when the autocorrelation distance increased. Thus, the uncertainty of soil can be overestimated when spatial variability of soil property is not considered, and therefore, to perform a more accurate probabilistic analysis, spatial variability of soil property needed to be considered.

Denoising PIV velocity fields and improving vortex identification using spatial filters (공간 필터를 이용한 PIV 속도장의 잡음 제거 및 와류 식별 개선)

  • Jung, Hyunkyun;Lee, Hoonsang;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.48-57
    • /
    • 2019
  • A straightforward strategy for particle image velocimetry (PIV) interrogation and post-processing has been proposed, aiming at reducing errors and clarifying vortex structures. The interrogation window size should be kept small to reduce bias error and improve spatial resolution. A spatial filter is then applied to the velocity field to reduce random error and clarify flow structure. The performance of three popular spatial filters were assessed: box filter, median filter, and local quadratic polynomial regression filter. In order to quantify random uncertainty, the image matching (IM) method is applied to an experimental dataset of homogeneous and isotropic turbulence (HIT) obtained by 2D-PIV. We statistically analyze the uncertainty propagation through the spatial filters, and verify the reduction in random uncertainty. Moreover, we illustrate that the spatial filters help clarify vortex structures using vortex identification criteria. As a result, PIV random uncertainty was reduced and the vortex structures became clearer by spatial filtering.

Effects of Anisotropic Fiber Packing on Stresses in Composites (이방성 섬유의 배열이 복합재료의 응력에 미치는 영향)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1284-1296
    • /
    • 2004
  • In order to investigate effects of anisotropic fiber packing on stresses in composites, a Volume Integral Equation Method is applied to calculate the elastostatic field in an unbounded isotropic elastic medium containing multiple orthotropic inclusions subject to remote loading, and a Mixed Volume and Boundary Integral Equation Method is introduced for the solution of elastostatic problems in unbounded isotropic materials containing multiple anisotropic inclusions as well as one void under uniform remote loading. A detailed analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out for square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively. Also, an analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out, when it is assumed that a void is replaced with one inclusion adjacent to the central inclusion of square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively, due to manufacturing and/or service induced defects. The effects of random orthotropic fiber packing on stresses at the interface between the isotropic matrix and the central orthotropic inclusion are compared with the influences of square and hexagonal orthotropic fiber packing on stresses. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with multiple orthotropic inclusions and one void, it will be established that these new methods are very accurate and effective for investigating effects of general anisotropic fiber packing on stresses in composites.

Relationship between Occupational Electromagnetic Field Exposure and Leukemia : A Meta-Analysis (직업성 전자장 노출과 백혈병 발생에 관한 메타분석)

  • Kim, Yoon-Shin;Song, Hae-Hiang;Hong, Seung-Cheol;Cho, Yong-Sung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.1
    • /
    • pp.125-133
    • /
    • 2000
  • Objectives : This study uses meta-analysis methodology to examine the statistical consistency and importance of random variation among results of epidemiologic studies of occupational electromagnetic field exposure and leukemia. Methods : Studies for this meta-analysis were identified from previous reviews and by asking researcher active in this field for recommendations. Overall, 27 studies of occupational electromagnetic field exposures and leukemia were reviewed. A variety of meta-analysis statistical methods have been used to assess combined effects, to identify heterogeneity, and to provide a single summary risk estimate based on a set of simiar epidemiologic studies. In this study, classification of exposure metircs on occupational epidemiologic studies are reported for (1) job classification (20 individual studies); (2) leukemia subtypes (13 individual studies); and (3) country (27 individual studies). Results : Results of this study, an inverse-variance weighted pooling of all the data leads to a small but significant elevation in risk of f 1% (OR=1.11, 95% CI : $1.06\sim1.16$) among 27 occupational epidemiologic studies. Publication bias was assessed by the 'fail-safe n' that may be not influence for all combined results exception a few categories, ie, 'power station operators' and 'electric utility workers' by job classification on occupational study. And ail combined odds ratio results were similar for fixed-effects models and random-effects models, with slightly higher risk estimates for the random-effects model in situations where there was significant heterogeneity, ie, Q-statistic significant (p<.05). Conclusions : We found a small elevation in risk of leukemia, but the ubiquitous nature of exposure to electromagnetic fields from workplace makes even a weak association a public health issue of substantial power to influence the present overall conclusion about relationship between electromagnetic fields exposure and leukemia.

  • PDF

Named Entity Recognition for Patent Documents Based on Conditional Random Fields (조건부 랜덤 필드를 이용한 특허 문서의 개체명 인식)

  • Lee, Tae Seok;Shin, Su Mi;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.419-424
    • /
    • 2016
  • Named entity recognition is required to improve the retrieval accuracy of patent documents or similar patents in the claims and patent descriptions. In this paper, we proposed an automatic named entity recognition for patents by using a conditional random field that is one of the best methods in machine learning research. Named entity recognition system has been constructed from the training set of tagged corpus with 660,000 words and 70,000 words are used as a test set for evaluation. The experiment shows that the accuracy is 93.6% and the Kappa coefficient is 0.67 between manual tagging and automatic tagging system. This figure is better than the Kappa coefficient 0.6 for manually tagged results and it shows that automatic named entity tagging system can be used as a practical tagging for patent documents in replacement of a manual tagging.

Probabilistic Seepage Analysis Considering the Spatial Variability of Permeability for Layered Soil (투수계수의 공간적 변동성을 고려한 층상지반에 대한 확률론적 침투해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.65-76
    • /
    • 2012
  • In this study, probabilistic analysis of seepage through a two-layered soil foundation was performed. The hydraulic conductivity of soil shows significant spatial variations in different layers because of stratification; further, it varies on a smaller scale within each individual layer. Therefore, the deterministic seepage analysis method was extended to develop a probabilistic approach that accounts for the uncertainties and spatial variation of the hydraulic conductivity in a layered soil profile. Two-dimensional random fields were generated on the basis of the Karhunen-Lo$\grave{e}$ve expansion in a manner consistent with a specified marginal distribution function and an autocorrelation function for each layer. A Monte Carlo simulation was then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty due to the spatial heterogeneity on the seepage behavior of two-layered soil foundation beneath water retaining structure. The results showed that the probabilistic framework can be used to efficiently consider the various flow patterns caused by the spatial variability of the hydraulic conductivity in seepage assessment for a layered soil foundation.

Probabilistic Stability Analysis of Slopes by the Limit Equilibrium Method Considering Spatial Variability of Soil Property (지반물성의 공간적 변동성을 고려한 한계평형법에 의한 확률론적 사면안정 해석)

  • Cho, Sung-Eun;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.13-25
    • /
    • 2009
  • In this paper, a numerical procedure of probabilistic slope stability analysis that considers the spatial variability of soil properties is presented. The procedure extends the deterministic analysis based on the limit equilibrium method of slices to a probabilistic approach that accounts for the uncertainties and spatial variation of the soil parameters. Making no a priori assumptions about the critical failure surface like the Random Finite Element Method (RFEM), the approach saves the amount of solution time required to perform the analysis. Two-dimensional random fields are generated based on a Karhunen-Lo$\grave{e}$ve expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty caused by the spatial heterogeneity on the stability of slope. The results show that the proposed method can efficiently consider the various failure mechanisms caused by the spatial variability of soil property in the probabilistic slope stability assessment.

Study of random characteristics of fluctuating wind loads on ultra-large cooling towers in full construction process

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.191-204
    • /
    • 2018
  • This article presents a study of the largest-ever (height = 220 m) cooling tower using the large eddy simulation (LES) method. Information about fluid fields around the tower and 3D aerodynamic time history in full construction process were obtained, and the wind pressure distribution along the entire tower predicted by the developed model was compared with standard curves and measured curves to validate the effectiveness of the simulating method. Based on that, average wind pressure distribution and characteristics of fluid fields in the construction process of ultra-large cooling tower were investigated. The characteristics of fluid fields in full construction process and their working principles were investigated based on wind speeds and vorticities under different construction conditions. Then, time domain characteristics of ultra-large cooling towers in full construction process, including fluctuating wind loads, extreme wind loads, lift and drag coefficients, and relationship of measuring points, were studied and fitting formula of extreme wind load as a function of height was developed based on the nonlinear least square method. Additionally, the frequency domain characteristics of wind loads on the constructing tower, including wind pressure power spectrum at typical measuring points, lift and drag power spectrum, circumferential correlations between typical measuring points, and vertical correlations of lift coefficient and drag coefficient, were analyzed. The results revealed that the random characteristics of fluctuating wind loads, as well as corresponding extreme wind pressure and power spectra curves, varied significantly and in real time with the height of the constructing tower. This study provides references for design of wind loads during construction period of ultra-large cooling towers.

The evolution of Magnetic fields in IntraClusterMedium

  • Park, Kiwan;Ryu, Dongsu;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2015
  • IntraCluster Medium (ICM) located at the galaxy cluster is in the state of very hot, tenuous, magnetized, and highly ionized X-ray emitting plasmas. High temperature and low density make ICM very viscous and conductive. In addition to the high conductivity, fluctuating random plasma motions in ICM, occurring at all evolution stages, generate and amplify the magnetic fields in such viscous ionized gas. The amplified magnetic fields in reverse drive and constrain the plasma motions beyond the viscous scale through the magnetic tension. Moreover, without the influence of resistivity viscous damping effect gets balanced only with the magnetic tension in the extended viscous scale leading to peculiar ICM energy spectra. This overall collisionless magnetohydrodynamic (MHD) turbulence in ICM was simulated using a hyper diffusivity method. The results show the plasma motions and frozen magnetic fields have power law of $E_V^k{\sim}k^{-3}$, $E_M^k{\sim}k^{-1}$. To explain these abnormal power spectra we set up two simultaneous differential equations for the kinetic and magnetic energy using an Eddy Damped Quasi Normal Markovianized (EDQNM) approximation. The solutions and dimensions of leading terms in the coupled equations derive the power spectra and tell us how the spectra are formed. We also derived the same results with a more intuitive balance relation and stationary energy transport rate.

  • PDF

Stochastic Mobility Model for Energy Efficiency in MANET Environment (MANET 환경에서 에너지 효율적인 Stochastic 노드 이동 모델)

  • Yun, Dai-Yeol;Yoon, Chang-Pyo;Hwang, Chi Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.444-446
    • /
    • 2021
  • MANETs(Mobile Ad-hoc Networks) are composed of mobile nodes that are not subordinate to fixed networks and have the feature that can form their own networks. they are used in various fields for specific goals. The mobility model in MANET can be applied in various ways depending on the purpose of usage. The random mobility model has the advantage of being simple and easy to implement, so it is being used the most. In a MANET, it is assumed that each node moves independently. The random movement model is a good model for expressing this independence of each node. However, it is insufficient to express the characteristics of all nodes with only random properties of individual nodes. This paper limits the stochastic mobility model applicable in MANET. we compare the proposed stochastic mobility model and the random mobility model. We confirm that the proposed mobility model is applied to the routing protocol to show improved characteristics in terms of energy consumption efficiency.

  • PDF