• Title/Summary/Keyword: random environment

Search Result 979, Processing Time 0.03 seconds

A Study on Use of Environment-Friendly Agricultural Products and Agricultural Safety Consciousness of Consumers (소비자의 환경친화적 농산물 이용과 안전 의식에 관한 연구)

  • Ko, Jung-Sook;Lee, Chae-Shik
    • Hwankyungkyoyuk
    • /
    • v.20 no.4
    • /
    • pp.117-131
    • /
    • 2007
  • The objectives of this study were to investigate using environment-friendly agricultural products and to analyze consciousness of agricultural safety of consumers. The data were collected from 1,000 consumers by two-staged stratified random sampling. SPSSWIN/ver. 13 program was used for analyzing data with frequency, cross-tab, t-test and ANOVA. The major findings of this study were as follows: 1) Consumers with higher academic career, more income, and white collars showed higher experiences on environment-friendly agricultural products. 2) Consumers who are under thirties, university graduation and upper income revealed high intention to use environment-friendly agricultural products. 3) The study revealed information needs and information acquisition are significantly different among consumers 4) Consumers with higher academic and upper income showed higher agricultural safety concern, 5) The study discovered that consumers who are over sixties and under middle school graduation were higher on agricultural safety effects.

  • PDF

A Research on the Service Environment Evaluation Elements for Development of the Silver Town (실버타운 개발을 위한 서비스환경 평가요인에 관한 연구)

  • Ha, Jeung-Soon;Kwak, Jae-Yong
    • Journal of the Korean housing association
    • /
    • v.18 no.5
    • /
    • pp.143-150
    • /
    • 2007
  • The purpose of this research is to example the general trend of the service environment evaluation of the silver town and classify based on the service environment evaluation to suggest a effective method and alternatives fur development companies. The survey population of this study focused on 40s and 50s' middle aged both genders living in the Seoul and national capital region, we used random sampling method. The analytical methods used in this study were frequency, mean, standard deviation, factor analysis, Chi-Squae analysis, ANOVA, cluster Analysis, post-hoc estimation (Duncan test), To verify the reliability of each measure, Cronbach's alpha coefficient was used. As a result of classifying the environment evaluation elements, it was classified into 5 groups for the differentiating strategy on each group. The groups are: life support service type, medical and health support service type, cultural support service type, indifference type, and food support service type.

Development of an Efficient Notching Toolkit for Response Limiting Method

  • Shin, Jo Mun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.40-46
    • /
    • 2021
  • At launch, satellites are exposed to various types of structural loads, such as quasi-static loads, sinusoidal vibrations, acoustic/random vibrations, and shocks. The launch environment test is aimed at verifying the structural stability of the test object against the launch environment. Various types of launch environments are simulated by simple vibration, acoustic, and shock tests considering possible test conditions in ground. However, the difference between the launch environment and the test environment is one of the causes of excessive testing. To prevent overtesting, a notching technique that adjusts the frequency range and the input load considering the design load is applied. For notching, specific procedures are established considering the satellite development concept, selected launch vehicle, higher system requirements, and test target level. In this study, the notching method, established procedure, and development of a notching toolkit for efficient testing are described.

Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence (인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발)

  • Seong-Su Kim;Kyuhee Son;Doyoun Kim;Jang-Mu Heo;Seongeun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.24-35
    • /
    • 2023
  • Rapid industrialization and urbanization have led to severe marine pollution. A Water Quality Index (WQI) has been developed to allow the effective management of marine pollution. However, the WQI suffers from problems with loss of information due to the complex calculations involved, changes in standards, calculation errors by practitioners, and statistical errors. Consequently, research on the use of artificial intelligence techniques to predict the marine and coastal WQI is being conducted both locally and internationally. In this study, six techniques (RF, XGBoost, KNN, Ext, SVM, and LR) were studied using marine environmental measurement data (2000-2020) to determine the most appropriate artificial intelligence technique to estimate the WOI of five ecoregions in the Korean seas. Our results show that the random forest method offers the best performance as compared to the other methods studied. The residual analysis of the WQI predicted score and actual score using the random forest method shows that the temporal and spatial prediction performance was exceptional for all ecoregions. In conclusion, the RF model of WQI prediction developed in this study is considered to be applicable to Korean seas with high accuracy.

Distributed UORA Scheme for Autonomous Train Communication in Congested Environment (자율주행 열차의 혼잡 상황 통신을 위한 분산형 UORA 기법)

  • Ahn, Woojin;Kim, Ronny Yongho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.542-547
    • /
    • 2019
  • Autonomous train is investigated to increase the capacity of railroad, and the reliability of wireless communication plays a critical role in terms of decreasing the inter-train distance. In this paper, we propose a transmission scheme for autonomous train communication in highly congested environment. The proposed scheme, namely distributed uplink orthogonal frequency division multiple access (OFDMA) random access (UORA), applies the triggered uplink access (TUA) and the UORA, introduced in the sixth generation WLAN standard, IEEE 802.11ax, for communication devices on vehicle and platform in a distributed manner. The simulation results show that the proposed scheme efficiently improves the packet transmission success rate in highly congested channel conditions compared to the conventional enhanced distributed channel access (EDCA) transmission scheme.

Applications of Machine Learning Models for the Estimation of Reservoir CO2 Emissions (저수지 CO2 배출량 산정을 위한 기계학습 모델의 적용)

  • Yoo, Jisu;Chung, Se-Woong;Park, Hyung-Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.326-333
    • /
    • 2017
  • The lakes and reservoirs have been reported as important sources of carbon emissions to the atmosphere in many countries. Although field experiments and theoretical investigations based on the fundamental gas exchange theory have proposed the quantitative amounts of Net Atmospheric Flux (NAF) in various climate regions, there are still large uncertainties at the global scale estimation. Mechanistic models can be used for understanding and estimating the temporal and spatial variations of the NAFs considering complicated hydrodynamic and biogeochemical processes in a reservoir, but these models require extensive and expensive datasets and model parameters. On the other hand, data driven machine learning (ML) algorithms are likely to be alternative tools to estimate the NAFs in responding to independent environmental variables. The objective of this study was to develop random forest (RF) and multi-layer artificial neural network (ANN) models for the estimation of the daily $CO_2$ NAFs in Daecheong Reservoir located in Geum River of Korea, and compare the models performance against the multiple linear regression (MLR) model that proposed in the previous study (Chung et al., 2016). As a result, the RF and ANN models showed much enhanced performance in the estimation of the high NAF values, while MLR model significantly under estimated them. Across validation with 10-fold random samplings was applied to evaluate the performance of three models, and indicated that the ANN model is best, and followed by RF and MLR models.

An Analysis of Educational Capacity Prediction according to Pre-survey of Satisfaction using Random Forest (랜덤 포레스트를 활용한 만족도 사전조사에 따른 교육 역량 예측 분석)

  • Nam, Kihun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.487-492
    • /
    • 2022
  • Universities are looking for various methods to enhance educational competence level suitable for the rapidly changing social environment. This study suggests a method to promote academic and educational achievements by reducing drop-out rate from their majors through implementation of pre-survey of satisfaction that revised and complemented survey items. To supplement the CQI method implemented after a general satisfaction survey, a pre-survey of satisfaction was carried out. To consolidate students' competences, this study made prediction and analysis of data with more importance possible using the Random Forest of the machine learning technique that can be applied to AI Medici platform, whose design is underway. By pre-processing the pre-survey of satisfaction, the students information enrolled in classes were defined as an explanatory variable, and they were classified, and a model was created and learning was conducted. For the experimental environment, the algorithms and sklearn library related in Jupyter notebook 3.7.7, Python 3.7 were used together. This study carried out a comparative analysis of change in educational satisfaction survey, carried out after classes, and trends in the drop-out students by reflecting the results of the suggested method in the classes.

Classification Abnormal temperatures based on Meteorological Environment using Random forests (랜덤포레스트를 이용한 기상 환경에 따른 이상기온 분류)

  • Youn Su Kim;Kwang Yoon Song;In Hong Chang
    • Journal of Integrative Natural Science
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Many abnormal climate events are occurring around the world. The cause of abnormal climate is related to temperature. Factors that affect temperature include excessive emissions of carbon and greenhouse gases from a global perspective, and air circulation from a local perspective. Due to the air circulation, many abnormal climate phenomena such as abnormally high temperature and abnormally low temperature are occurring in certain areas, which can cause very serious human damage. Therefore, the problem of abnormal temperature should not be approached only as a case of climate change, but should be studied as a new category of climate crisis. In this study, we proposed a model for the classification of abnormal temperature using random forests based on various meteorological data such as longitudinal observations, yellow dust, ultraviolet radiation from 2018 to 2022 for each region in Korea. Here, the meteorological data had an imbalance problem, so the imbalance problem was solved by oversampling. As a result, we found that the variables affecting abnormal temperature are different in different regions. In particular, the central and southern regions are influenced by high pressure (Mainland China, Siberian high pressure, and North Pacific high pressure) due to their regional characteristics, so pressure-related variables had a significant impact on the classification of abnormal temperature. This suggests that a regional approach can be taken to predict abnormal temperatures from the surrounding meteorological environment. In addition, in the event of an abnormal temperature, it seems that it is possible to take preventive measures in advance according to regional characteristics.

Data-driven Model Prediction of Harmful Cyanobacterial Blooms in the Nakdong River in Response to Increased Temperatures Under Climate Change Scenarios (기후변화 시나리오의 기온상승에 따른 낙동강 남세균 발생 예측을 위한 데이터 기반 모델 시뮬레이션)

  • Gayeon Jang;Minkyoung Jo;Jayun Kim;Sangjun Kim;Himchan Park;Joonhong Park
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.121-129
    • /
    • 2024
  • Harmful cyanobacterial blooms (HCBs) are caused by the rapid proliferation of cyanobacteria and are believed to be exacerbated by climate change. However, the extent to which HCBs will be stimulated in the future due to increased temperature remains uncertain. This study aims to predict the future occurrence of cyanobacteria in the Nakdong River, which has the highest incidence of HCBs in South Korea, based on temperature rise scenarios. Representative Concentration Pathways (RCPs) were used as the basis for these scenarios. Data-driven model simulations were conducted, and out of the four machine learning techniques tested (multiple linear regression, support vector regressor, decision tree, and random forest), the random forest model was selected for its relatively high prediction accuracy. The random forest model was used to predict the occurrence of cyanobacteria. The results of boxplot and time-series analyses showed that under the worst-case scenario (RCP8.5 (2100)), where temperature increases significantly, cyanobacterial abundance across all study areas was greatly stimulated. The study also found that the frequencies of HCB occurrences exceeding certain thresholds (100,000 and 1,000,000 cells/mL) increased under both the best-case scenario (RCP2.6 (2050)) and worst-case scenario (RCP8.5 (2100)). These findings suggest that the frequency of HCB occurrences surpassing a certain threshold level can serve as a useful diagnostic indicator of vulnerability to temperature increases caused by climate change. Additionally, this study highlights that water bodies currently susceptible to HCBs are likely to become even more vulnerable with climate change compared to those that are currently less susceptible.

Evaluation of One-particle Stochastic Lagrangian Models in Horizontally - homogeneous Neutrally - stratified Atmospheric Surface Layer (이상적인 중립 대기경계층에서 라그랑지안 단일입자 모델의 평가)

  • 김석철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.397-414
    • /
    • 2003
  • The performance of one-particle stochastic Lagrangian models for passive tracer dispersion are evaluated against measurements in horizontally-homogeneous neutrally-stratified atmospheric surface layer. State-of-the-technology models as well as classical Langevin models, all in class of well mixed models are numerically implemented for inter-model comparison study. Model results (far-downstream asymptotic behavior and vertical profiles of the time averaged concentrations, concentration fluxes, and concentration fluctuations) are compared with the reported measurements. The results are: 1) the far-downstream asymptotic trends of all models except Reynolds model agree well with Garger and Zhukov's measurements. 2) profiles of the average concentrations and vertical concentration fluxes by all models except Reynolds model show good agreement with Raupach and Legg's experimental data. Reynolds model produces horizontal concentration flux profiles most close to measurements, yet all other models fail severely. 3) With temporally correlated emissions, one-particle models seems to simulate fairly the concentration fluctuations induced by plume meandering, when the statistical random noises are removed from the calculated concentration fluctuations. Analytical expression for the statistical random noise of one-particle model is presented. This study finds no indication that recent models of most delicate theoretical background are superior to the simple Langevin model in accuracy and numerical performance at well.