• Title/Summary/Keyword: random data analysis

Search Result 1,698, Processing Time 0.031 seconds

Review and discussion of marginalized random effects models (주변화 변량효과모형의 조사 및 고찰)

  • Jeon, Joo Yeong;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1263-1272
    • /
    • 2014
  • Longitudinal categorical data commonly occur from medical, health, and social sciences. In these data, the correlation of repeated outcomes is taken into account to explain the effects of covariates exactly. In this paper, we introduce marginalized random effects models that are used for the estimation of the population-averaged effects of covariates. We also review how these models have been developed. Real data analysis is presented using the marginalized random effects.

Probabilistic Fatigue Crack Growth Analysis under Random Loading (불규칙 하중하의 확률론적 피로균열 성장 해석)

  • Song, Sam-Hong;Chang, Doo-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.192-200
    • /
    • 1994
  • The methodology of a simple probabilistic fatigue crack under random loading is proposed. Using the crack closure concept, the crack opening stress is assumed to be constant during random loading. The loading history was analyzed to determine the probability density functions, probability distribution functions and other related parameters for the probabilistic fatigue crack growth analysis. Fatigue crack growth using the exisiting available data was predicted by the proposed probabilistic analysis and compared with experimental data.

  • PDF

A Study on the Conditional Survival Function with Random Censored Data

  • Lee, Won-Kee;Song, Myung-Unn
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.405-411
    • /
    • 2004
  • In the analysis of cancer data, it is important to make inferences of survival function and to assess the effects of covariates. Cox's proportional hazard model(PHM) and Beran's nonparametric method are generally used to estimate the survival function with covariates. We adjusted the incomplete survival time using the Buckley and James's(1979) pseudo random variables, and then proposed the estimator for the conditional survival function. Also, we carried out the simulation studies to compare the performances of the proposed method.

  • PDF

Machine learning in survival analysis (생존분석에서의 기계학습)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • We investigated various types of machine learning methods that can be applied to censored data. Exploratory data analysis reveals the distribution of each feature, relationships among features. Next, classification problem has been set up where the dependent variable is death_event while the rest of the features are independent variables. After applying various machine learning methods to the data, it has been found that just like many other reports from the artificial intelligence arena random forest performs better than logistic regression. But recently well performed artificial neural network and gradient boost do not perform as expected due to the lack of data. Finally Kaplan-Meier and Cox proportional hazard model have been employed to explore the relationship of the dependent variable (ti, δi) with the independent variables. Also random forest which is used in machine learning has been applied to the survival analysis with censored data.

Hierarchical Bayes Analysis of Longitudinal Poisson Count Data

  • Kim, Dal-Ho;Shin, Im-Hee;Choi, In-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.227-234
    • /
    • 2002
  • In this paper, we consider hierarchical Bayes generalized linear models for the analysis of longitudinal count data. Specifically we introduce the hierarchical Bayes random effects models. We discuss implementation of the Bayes procedures via Markov chain Monte Carlo (MCMC) integration techniques. The hierarchical Baye method is illustrated with a real dataset and is compared with other statistical methods.

  • PDF

A case study on the random coefficient model for diet experimental data (변량계수모형의 식이요법 실험자료에 관한 사례연구)

  • Jo, Jin-Nam;Baik, Jai-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.787-796
    • /
    • 2009
  • A random coefficient model is applied when times of the repeated measurements are not fixed in experiments with respect to the subjects. The procedures of the inference of a random coefficient model are same as those of a mixed model. Diet experimental data was used for applying the random coefficient model. Various random coefficient models are investigated for the experimental data, and are compared each other. Finally, optimal random coefficient model would be selected. It resulted from the analysis that for the fixed effect factor, the baseline, treatment, height, and time effect were very significant. The treatment effect of the diet foods and exercises were more effective in losing weight than the effect of the diet foods only. The fixed cubic time effect was very significant. The variance components corresponding to the subject effect, linear time effect, quadratic time effect, and cubic time effect of the random coefficients are all positive. When quartic time effect was added as random coefficients the model did not converge. Thus random coefficients up to the cubic terms was considered as the optimal model.

  • PDF

Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information (머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

Identification of Chaos Phenomenon using the Classical Nonparametric Tests

  • Park, Young-Sun;Choi, Hang-Suk;Choi, Eun-Sun;Park, Moon-Il;Oh, Jae-Eung;Cha, Kyung-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.95-113
    • /
    • 2006
  • The data resulting from a deterministic dynamic system may often appear to be random. However, it is important to distinguish a deterministic and a random processes for statistical analysis. In this paper, we propose a nonparametric test procedure to distinguish a noisy chaos from i.i.d. random process. The proposed procedure can be easily implemented by computer. We notice that the test is very effective to identify a low dimensional chaos process in some cases.

  • PDF

Fatigue Life Assessment of Journal Box Attached to Bogie under Multiaxial Random Dynamic Loading (다축 Random Dynamic 하중을 받는 대차 저널박스의 피로수명평가)

  • Park, Sang-Goo;Kim, Seung-Seob;Han, Sung-Wook;Park, Geun-Su;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1125-1131
    • /
    • 2009
  • This paper presents the evaluation of fatigue life for a journal box attached to rolling stock bogie under random dynamic loading condition. Because a journal box was under random dynamic loading conditions, the fatigue life assessment due to these loads requires the analysis considering the multiaxial effect of random dynamic loading. To do this work, the finite element analysis has been conducted to calculate random dynamic response using multiaxial acceleration data. Then, the fatigue life assessment of component has been conducted using vibration fatigue analysis applying the power spectral densities of the responses obtained through the FEA The results of fatigue life assessment were compared to the damage from the strain measurement. This study shows that can be evaluated the fatigue life assessment considering real service condition about a component attached to rolling stock bogie.

  • PDF

Comparison of Genetic Parameter Estimates of Total Sperm Cells of Boars between Random Regression and Multiple Trait Animal Models

  • Oh, S.-H.;See, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.923-927
    • /
    • 2008
  • The objective of this study was to compare random regression model and multiple trait animal model estimates of the (co) variance of total sperm cells over the active lifetime of AI boars. Data were provided by Smithfield Premium Genetics (Rose Hill, NC). Total number of records and animals for the random regression model were 19,629 and 1,736, respectively. Data for multiple trait animal model analyses were edited to include only records produced at 9, 12, 15, 18, 21, 24, and 27 months of age. For the multiple trait method estimates of genetic and residual variance for total sperm cells were heterogeneous among age classifications. When comparing multiple trait method to random regression, heritability estimates were similar except for total sperm cells at 24 months of age. The multiple trait method also resulted in higher estimates of heritability of total sperm cells at every age when compared to random regression results. Random regression analysis provided more detail with regard to changes of variance components with age. Random regression methods are the most appropriate to analyze semen traits as they are longitudinal data measured over the lifetime of boars.