DOI QR코드

DOI QR Code

Review and discussion of marginalized random effects models

주변화 변량효과모형의 조사 및 고찰

  • Received : 2014.07.29
  • Accepted : 2014.09.24
  • Published : 2014.11.30

Abstract

Longitudinal categorical data commonly occur from medical, health, and social sciences. In these data, the correlation of repeated outcomes is taken into account to explain the effects of covariates exactly. In this paper, we introduce marginalized random effects models that are used for the estimation of the population-averaged effects of covariates. We also review how these models have been developed. Real data analysis is presented using the marginalized random effects.

경시적 범주형자료 (longitudinal categorical data)는 의학, 보건학, 그리고 사회과학에서 많이 발생하는 자료이다. 이러한 자료는 반복측정으로 인한 결과치들의 상관관계를 설명하면서 공변량의 효과를 설명해야 한다. 이 논문에서 모집단에 대한 공변량의 효과를 추정하면서 우도함수에 기초한 모형인 주변화 변량효과모형 (marginalized random effects model)을 소개하고, 그 모형의 어떻게 발전했는지를 고찰한다. 그리고 실제 자료를 이용하여 제시된 모형을 설명한다.

Keywords

References

  1. Agresti, A. (2002). Categorical data analysis, 2nd edition, Wiley, New York.
  2. Breslow, N. E. and Clayton, D. G. (1993). Approximate Inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 421, 9-25.
  3. Daniels, M. J. and Hogan, J. W. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis, Chapman & Hall/CRC, New York.
  4. Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. (2002). Analysis of longitudinal data, 2nd Ed., Oxford Press, Oxford.
  5. Heagerty, P. J. (1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics, 55, 688-698. https://doi.org/10.1111/j.0006-341X.1999.00688.x
  6. Heagerty, P. J. (2002). Marginalized transition models and likelihood inference for longitudinal categorical data. Biometrics, 58, 342-351. https://doi.org/10.1111/j.0006-341X.2002.00342.x
  7. Heagerty. P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimate and generalized linear mixed models. Biometrika, 88, 973-985. https://doi.org/10.1093/biomet/88.4.973
  8. Heagerty, P. J. and Zeger, S. L. (2000). Marginalized multilevel models and likelihood inference (with discussion). Statistical Science, 15, 1-26.
  9. Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal analysis using generalized linear models. Biometrika, 73, 13-22. https://doi.org/10.1093/biomet/73.1.13
  10. Lee, K. and Daniels, M. J. (2007). A class of Markov models longitudinal ordinal data. Biometrics, 63, 1060-1067. https://doi.org/10.1111/j.1541-0420.2007.00800.x
  11. Lee, K. and Daniels, M. J. (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies. Statistics in Medicine, 27, 4359-4380. https://doi.org/10.1002/sim.3352
  12. Lee, K., Kang, S., Liu, X. and Seo, D. (2011). Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models. Journal of Applied Statistics. 38, 1577-1590. https://doi.org/10.1080/02664763.2010.515675
  13. Lee, K. and Mercante, D. (2010). Longitudinal nominal data analysis using marginalized models. Computational Statistics & Data Analysis, 54, 208-218 https://doi.org/10.1016/j.csda.2009.08.005
  14. Lee. M., Lee. K. and Lee, J. (2012). Marginalized transition shared random effects models for longitudinal binary data with nonighorable dropout. Biometrical Journal, 56, 230-242.
  15. Lee. K. and Sung, S. (2013) Autoregressive Cholesky factor modeling for marginalized random effects models. Communications for Statistical Applications and Methods, 20, 1-13. https://doi.org/10.5351/CSAM.2013.20.1.001
  16. Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Uunconstrained parameterisation. Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677

Cited by

  1. Modeling of random effects covariance matrix in marginalized random effects models vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.815
  2. ROC curve and AUC for linear growth models vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1367
  3. Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.689
  4. 경시적 자료를 이용한 아동 학업성취도 분석 vol.28, pp.1, 2017, https://doi.org/10.7465/jkdi.2017.28.1.1
  5. Poisson linear mixed models with ARMA random effects covariance matrix vol.28, pp.4, 2017, https://doi.org/10.7465/jkdi.2017.28.4.927