References
- Agresti, A. (2002). Categorical data analysis, 2nd edition, Wiley, New York.
- Breslow, N. E. and Clayton, D. G. (1993). Approximate Inference in generalized linear mixed models. Journal of the American Statistical Association, 88, 421, 9-25.
- Daniels, M. J. and Hogan, J. W. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis, Chapman & Hall/CRC, New York.
- Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. (2002). Analysis of longitudinal data, 2nd Ed., Oxford Press, Oxford.
- Heagerty, P. J. (1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics, 55, 688-698. https://doi.org/10.1111/j.0006-341X.1999.00688.x
- Heagerty, P. J. (2002). Marginalized transition models and likelihood inference for longitudinal categorical data. Biometrics, 58, 342-351. https://doi.org/10.1111/j.0006-341X.2002.00342.x
- Heagerty. P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimate and generalized linear mixed models. Biometrika, 88, 973-985. https://doi.org/10.1093/biomet/88.4.973
- Heagerty, P. J. and Zeger, S. L. (2000). Marginalized multilevel models and likelihood inference (with discussion). Statistical Science, 15, 1-26.
- Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal analysis using generalized linear models. Biometrika, 73, 13-22. https://doi.org/10.1093/biomet/73.1.13
- Lee, K. and Daniels, M. J. (2007). A class of Markov models longitudinal ordinal data. Biometrics, 63, 1060-1067. https://doi.org/10.1111/j.1541-0420.2007.00800.x
- Lee, K. and Daniels, M. J. (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies. Statistics in Medicine, 27, 4359-4380. https://doi.org/10.1002/sim.3352
- Lee, K., Kang, S., Liu, X. and Seo, D. (2011). Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models. Journal of Applied Statistics. 38, 1577-1590. https://doi.org/10.1080/02664763.2010.515675
- Lee, K. and Mercante, D. (2010). Longitudinal nominal data analysis using marginalized models. Computational Statistics & Data Analysis, 54, 208-218 https://doi.org/10.1016/j.csda.2009.08.005
- Lee. M., Lee. K. and Lee, J. (2012). Marginalized transition shared random effects models for longitudinal binary data with nonighorable dropout. Biometrical Journal, 56, 230-242.
- Lee. K. and Sung, S. (2013) Autoregressive Cholesky factor modeling for marginalized random effects models. Communications for Statistical Applications and Methods, 20, 1-13. https://doi.org/10.5351/CSAM.2013.20.1.001
- Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Uunconstrained parameterisation. Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
Cited by
- Modeling of random effects covariance matrix in marginalized random effects models vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.815
- ROC curve and AUC for linear growth models vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1367
- Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.689
- 경시적 자료를 이용한 아동 학업성취도 분석 vol.28, pp.1, 2017, https://doi.org/10.7465/jkdi.2017.28.1.1
- Poisson linear mixed models with ARMA random effects covariance matrix vol.28, pp.4, 2017, https://doi.org/10.7465/jkdi.2017.28.4.927