• Title/Summary/Keyword: ramjet combustor

Search Result 71, Processing Time 0.031 seconds

Research Activity on Rocket-Ramjet Combined-cycle Engine in JAXA

  • Takegoshi, Masao;Kanda, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.460-468
    • /
    • 2008
  • Recent activities on the scramjet and rocket-ramjet combined-cycle engine of Japan Aerospace Exploration Agency(JAXA) are herein presented. The scramjet engines and combined-cycle engines have been studied in the world and JAXA has also studied such the engines experimentally, numerically and conceptually. Based on the studies, 2 to 3 m long, hydrogen-fueled engine models were designed and tested at the Ramjet Engine Test Facility(RJTF) and the High Enthalpy Shock Tunnel(HIEST). A scramjet engine model was tested in Mach 10 to 14 flight condition at HIEST. A 3 m long scramjet engine model was designed to reduce a dissociation energy loss in a high temperature condition. Drag reduction by a tangential injection and two ways of a transverse fuel injection were examined. Combustor model tests at three operating modes of the combined-cycle engine were conducted, demonstrating the combustor operation and producing data for the engine design at each mode. Aerodynamic engine model tests were conducted in a transonic wind tunnel, demonstrating the engine operation in the ejector-jet mode. A 3 m long combined-cycle engine model has been tested in the ejector-jet mode and the ramjet mode since March 2007. Carbon composite material was examined for application to the engines. Production of the cooling channel on a nickel alloy plate succeeded by the electro-chemical etching.

  • PDF

Design Method and Preliminary Data Analysis of Subscale Direct-Connect Test Facility for Liquid Ramjet Combustor (I) (액체 램제트 엔진용 소형 연소기 직접 연결식 시험장치의 설계 방법과 시험 데이터 분석 (I))

  • 성홍계;김인식;이규준;김경무;이도형;변종렬;황용석;오석진;한정식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.59-63
    • /
    • 2003
  • This paper describes the conceptual design method of subscale direct-connect test facility for liquid fuel ramjet combustion study and preliminary analysis of test results. The measured pressure signal represents the successful operation of the test facility. The pressure oscillation in combustion chamber shows the dominant frequency of 190Hz, relatively very low frequency to 1L acoustic mode (1200Hz) based on the length of combustor. It is suspected that there were several driving sources, which are vortex street at backward step of combustor, inlet resonance induced by the long length of unchecked inlet, and/or combustor configuration with optical window.

  • PDF

Characteristics of the Spray and Combustion in the Liquid Jet (고온, 고속기류 중에 수직 분사되는 연료제트의 분무 및 연소특성)

  • Youn, H.J.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.12-17
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liguid jet injected transversely into the subsonic vitiated airstream, which is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length and air temperature of the combustor became longer. Combustion efficiency increased when the length of the combustor was long and the air temperature was high. Especially, stable flame region is enlarged when the length of the combustor was long and the air temperature was high. Type Abstract here. Type Abstract here.

  • PDF

Flow Characteristics of Secondary Recirculation Region in a Liquid Ramjet Combustor (액체 램젯트 엔진 연소기내의 이차유동 특성)

  • C. H. Sohn;J. S. Hong;S. Y. Moon;C. W. Lee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.137-140
    • /
    • 2003
  • The flow characteristics of secondary recirculation region in a liquid fuel ramjet combustor are measured using PIV method. The model combustor has two rectangular inlets that form 90 degree angle each other. The tested angles of the air intakes were 30, 45 and 60. Three guide vanes are installed in each rectangular inlet to improve the flow stability. The experiments are performed in the water tunnel test with the same Reynolds number as the case of Mach 0.3 at the inlet. PIV software is developed to measure the characteristics of the flow field in the combustor. The accuracy of the developed PIV program is verified with rotating disk experiment and standard data. The experimental results show that the secondary recirculation flow occurred at the front junction of inlet main stream and combustorchamber. The size of secondary recirculation regions are increased with increasing air inlet angles. Since the performanceof combustor is very dependant on not only the main recirculation in the dome region but also the secondary recirculation flow in a junction region, the optimal angle of the air intakes should consider the both recirculation size as a frame holder.

  • PDF

Analysis on the Unsteady Reacting Flow-field in Integrated Rocket Ramjet (일체형 로켓 램제트의 비정상 반응유동장 해석)

  • Ko, Hyun;Park, Byung-Hun;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1494-1498
    • /
    • 2004
  • Transition sequence of rocket to ramjet was simulated numerically for a two-dimensional axisymmetric can-type ramjet engine. Multi-species preconditioned Navier-Stokes equations with $k-{\varepsilon}$ turbulence model and finite-rate chemistry model was employed. To calculate transition sequence, initial flow-field conditions for inlet diffuser with closed port-cover was computed first, and then that result was applied as initial conditions after port-cover opened. Terminal shock was developed as a result of increased pressure in a combustor due to combustion and ramjet operated at supercritical condition. For a smaller nozzle throat area, buzz instability was occurred. Strong pressure oscillations were observed as a result of forward and backward movement of terminal shock and those oscillations were not damped out.

  • PDF

Analysis of Three Dimensional Liquid Ramjet Engine with Spray and Combustion (액체 램제트 엔진의 3차원 분무 및 연소 반응 해석)

  • 오대환;임상규;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 1999
  • Liquid ramjet combustor is closely connected with complex phenomena due to a series of processes such as intake air, spray, mixing, and combustion. The present numerical experiments were peformed to investigate these flow characteristics for two and three dimensional liquid ramjet combustor. Grid system was made with three domains: intake region where air is supplied and fuel is injected, combustor and nozzle region, and exit atmosphere region. The numerical results showed that two and three dimensional flow patterns in recirculation region of combustor were significantly different each other and spray model was necessary to predict correctly the chemical reaction flow characteristics. Numerically examined for two different location of fuel injector, one is located on the bottom position of curved intake and the other is located on the top position. We found that bottom position of fuel injector is better than top position because fuel influx to the recirculation region which is need to sustain chemical reaction is more than the latter.

  • PDF

Analysis of Dual Combustion Ramjet Using Quasi 1D Model (준 1차원 모델을 적용한 이중연소 램제트 해석)

  • Choi, Jong Ho;Park, Ik Soo;Gil, Hyun Young;Hwang, Ki Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.81-88
    • /
    • 2013
  • The component based propulsion modeling and simulation of an dual ramjet engine using Taylor-Maccoll flow equation and quasi 1-D combustor model. The subsonic and supersonic intake were modeled with Taylor-Maccoll flow having $25^{\circ}$ cone angle, the gas generator which transfers a pre-combustion gas into supersonic combustor was developed using Lumped model, and the determination of the size of nozzle throat of a gas generator was described. A quasi 1-D model was applied to model a supersonic combustor and the variation of temperature and pressure inside combustor were presented. Furthermore, the thrust and specific impulse applying fuel regulation by pressure recovery ratio and equivalence ratio were derived.

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

Performance Load Balancing and Sensitivity Analysis of Ramjet/Scramjet for Dual-Combustion/Dual-Mode Ramjet Engine Part I. Performance Load Balancing (이중램제트(이중연소/이중모드)엔진을 위한 램제트/스크램제트의 작동영역분배 및 성능민감도분석 Part I. 작동영역분배)

  • Kim, Sun-Kyoung;Jeon, Chang-Soo;Sung, Hong-Gye;Byen, Jong-Ryul;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.586-595
    • /
    • 2010
  • An analytical study based on physical understandings and aero-thermodynamic theories was conducted to observe the performance characteristics and to derive the essential design parameters of dual ramjet(dual-combustion/dual-mode) propulsion for wide Mach number. The performances and operating limitations of the engines with two types combustors, such as constant pressure- and constant area- combustor, over various flight Mach numbers was investigated. Finally, the transition Mach number from ramjet to scramjet was carried out to optimize performance load balancing of ramjet and scramjet.

Review of the Inlet Air Temperature Effect on the Ramjet Performance Efficiency (램제트 성능에 미치는 흡입 공기 온도에 대한 고찰)

  • Lee, Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.271-274
    • /
    • 2007
  • In the fuel of the solid fuel ramjet there are metal particles in order to improve the Isp like as solid rocket propellants. Because of the short combustion residence time these metallized fuels have low combustion efficiencies. Therefore it is necessary to increase the combustion efficiency and the inlet air temperature does an important role to this. The main factors to affect the inlet air temperature is the free stream temperature and the flight Mach number. Also the flow velocity in the combustor does an important role, therefore entire range of the air flow; from the stagnation to the sonic velocity in the ramjet combustor is considered.

  • PDF