• Title/Summary/Keyword: raman spectroscopy

Search Result 1,152, Processing Time 0.176 seconds

Stellar Wind Accretion and Raman O VI Spectroscopy of the Symbiotic Star AG Draconis

  • Lee, Young-Min;Lee, Hee-Won;Lee, Ho-Gyu;Angeloni, Rodolfo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.63.4-64
    • /
    • 2018
  • High resolution spectroscopy of the yellow symbiotic star AG Draconis is performed with the Canada-France-Hawaii Telescope to analyse the line profiles of Raman scattered O VI broad emission features at $6825{\AA}$ and $7082{\AA}$ with a view to investigating the wind accretion process from the mass losing giant to the white dwarf. These two spectral features are formed through inelastic scattering of O $VI{\lambda}{\lambda}32$ and 1038 with atomic hydrogen. We find that these features exhibit double-component profiles with red parts stronger than blue ones with the velocity separation of ~ 60 km s-1 in the O VI velocity space. Monte Carlo simulations for O VI line radiative transfer are performed by assuming that the O VI emission region constitutes a part of the accretion flow around the white dwarf and that Raman O VI features are formed in the neutral part of the slow stellar wind from the giant companion. The overall Raman O VI profiles are reasonably fit with an azimuthally asymmetric accretion flow and the mass loss rate ~ 4 ${\times}$ 10^{-7} M_sun yr^{-1}. We also find that additional bipolar neutral regions moving away with a speed ~ 70 km s^{-1} in the directions perpendicular to the orbital plane provide considerably improved fit to the red wing parts of Raman features.

  • PDF

A Study on Spectroscopic Analysis by using Raman Spectrometer of Multi-Guest Mixed Hydrates Containing $SF_6$ (Raman Spectroscopy를 이용한 $SF_6$ 혼합 하이드레이트의 분광학적 해석에 관한 연구)

  • Shin, H.J.;Moon, D.H.;Kim, M.C.;Kim, Y.S.;Seo, Y.W.;Lee, G.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.223-225
    • /
    • 2008
  • 하이드레이트는 저온.고압에서 저분자량의 게스트(guest)가 호스트(host)인 물분자 속에 포획되어 만들어지는데 일련의 과정은 물리적 반응을 통해 생성된다.본 연구에서는$CO_2$보다 지구온난화지수(Global Warming Potential)가 23,900배 높은 $SF_6$의 회수 및 정제기술로써 하이드레이트화를 이용하는 신기술 개발의 일환으로 분광학적 접근을 통해 $SF_6$ 혼합 하이드레이트의 정성 및 정량분석을 수행하였다. Raman Shift 분석 결과 $SF_6$$770cm^{-1}$에서 $v_1$ 진동주파수를 확인함으로써 하이드레이트 내 $SF_6$가 안정적으로 포집됨을 확인하였고 혼합가스 내 $SF_6$ 농도별로 만들어진 샘플의 Raman Shift를 통해서 $SF_6$의 하이드레이트 전환율을 가늠할 수 있었다.

  • PDF

Effect of Steady-State Oxidation on Tensile Failure of Zircaloy Cladding

  • Kim, Taeho;Choi, Kyoung Joon;Yoo, Seung Chang;Lee, Yunju;Kim, Ji Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.161-170
    • /
    • 2022
  • The effect of oxidation time on the characteristics and mechanical properties of spent nuclear fuel cladding was investigated using Raman spectroscopy, tube rupture test, and tensile test. As oxidation time increased, the Raman peak associated with the tetragonal zirconium oxide phase diminished and merged with the Raman peak associated with the monoclinic zirconium oxide phase near 333 cm-1. Additionally, the other tetragonal zirconium oxide phase peak at 380 cm-1 decreased after 100 d of oxidation, whereas the zirconium monoclinic oxide peak became the dominant peak. The oxidation time had no effect on the tube rupture pressure of the oxidized zirconium alloy tube. However, the yield and tensile stresses of the oxidized nuclear fuel cladding tube decreased after 100 d of oxidation. The results of the scanning electron microscopy and transmission electron microscopy were represented with the in-situ Raman analysis result for the oxide characteristics generated on the cladding of spent nuclear fuel.

Relationships between the Raman Excitation Photon Energies and Its Wavenumbers in Doped trans-Polyacetylene

  • Kim, Jin-Yeol;Kim, Eung-Ryul;Ihm, Dae-Woo;Tasumi, Mitsuo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1404-1408
    • /
    • 2002
  • The resonance Raman spectra of trans-polyacetylene films doped heavily with electron donor (Na) and acceptor (HClO4) have been measured with excitation wavelengths between 488- and 1320-nm, and the relationships between the Raman excitation photon energies (2.54-0.94 eV) and its wavenumbers were discussed. We found the linear dependence of the Raman shifts with the exchanges of excitation photon energies. In particular, the Raman wavenumbers in the C=C stretching $(V_1$ band) showed a dramatic decrease with the increase in Raman excitation photon energies. In the case of acceptor doping, its change is larger than that of donor doping. The observed wavenumber (1255-1267 $cm^{-1}$) of the $V_2$ band (CC stretch) of Na-doped form is lower than that of the corresponding band (1290-1292 $cm^{-1}$) of its pristine trans-polyacetylene, whereas the contrary is the case for the HClO4 doped form (1295-1300 $cm^{-1}$). The origin of doping-induced Raman bands is discussed in terms of negative and positive polarons.

Analysis and Conservation of Historic Textiles - Theory and Practice - (섬유 문화재의 분석과 보존처리 - 이론과 실제 -)

  • Oh, Joon-Suk
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.5
    • /
    • pp.211-231
    • /
    • 2008
  • To conserve historic textiles, analyses of textile materials, pollutants and deterioration are prerequisite steps. Based upon analytical results, guides for conservation of historic textiles are established. In analyses of textile materials, pollutants and deterioration, there are chemical methods(burning, solubility and staining), physical methods(microscopy and density) and instrumental analysis(Fourier Transform Infrared Spectroscopy (FT-IR), Fourier Transform Raman Spectroscopy(FT-Raman), Gas Chromatography(GC), Mass Spectroscopy(MS), X-Ray Fluorescence (EDXRF, WDXRF), Energy Dispersive Spectroscopy(EDS), and X-Ray Diffraction(XRD), Tensile Testing Machine etc.). Combination of qualitative and quantitative analyses makes accurate diagnosis of textile condition possible. As examples of analyses and conservation of historic textiles, Chuninsan(19 century) similar to sunshade with handing down historic textile and golden decorative skirt(17 century) with excavated costume are taken.

Effect of Residual Stress on Raman Spectra in Tetrahedral Amorphous Carbon(ta-C) Film

  • Shin, Jin-Koog;Lee, Churl-Seung;Moon, Myoung-Woon;Oh, Kyu-Hwan;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.135-135
    • /
    • 1999
  • It is well known that Raman spectroscopy is powerful tool in analysis of sp3/sp3 bonding fraction in diamond-like carbon(DLC) films. Raman spectra of DLC film is composed of D-peak centered at 1350cm-1 and G-peak centered at 1530cm-1. The sp3/sp3 fraction is qualitatively acquired by deconvolution method. However, in case of DLC film, it is generally observed that G-peak position shifts toward low wavenumber as th sp3 fraction increases. However, opposite results were frequently observed in ta-C films. ta-C film has much higher residual compressive stress due to its high sp3 fraction compared to the DLC films deposited by CVD method. Effect of residual stress on G-peak position is most recommendable parameter in Raman analysis of ta-C, due to its smallest fitting error among many parameters acquired by peak deconvolution of symmetric spectra. In current study, the effect of residual stress on Raman spectra was quantitatively evaluated by free-hang method. ta-C films of different residual stress were deposited on Si-wafer by modifying DC-bias voltage during deposition. The variation of the G-peak position along the etching depth were observed in the free-hangs of 20~30${\mu}{\textrm}{m}$ etching depth. Mathematical result based on Airy stress function, was compared with experimental results. The more reliable analysis excluding stress-induced shift was possible by elimination of the Raman shift due to residual compressiove stress.

  • PDF

Rapid bacterial identification using Raman spectroscopy (라만 분광법을 활용한 세균 검측 기술)

  • No, Jee Hyun;Lee, Tae Kwon
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • Raman microspectroscopy is a promising tool for microbial analysis at single cell level since it can rapidly measure the cell materials including lipids, nucleic acids, and proteins by measuring the inelastic scattering of a molecule irradiated by monochromatic lights. Using Raman spectra provides high specificity and sensitivity in classification of bacteria at the strain level. In addition, a Raman approach coupled with stabled isotope such as $^{13}C$ and $^2H$ is able to detect and quantify general metabolic activity at single cell level. After bacterial detection process by Raman microspectroscopy, interested unculturable cell sorting and single cell genomics can be accomplished by combination with optical tweezer and microfluidic devices. In this review, the characteristics and applications of Raman microspectroscopy were reviewed and summarized in order to provide a better understanding of microbial analysis using Raman spectroscopy.

Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy (라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계)

  • Kim, Eun-Hu;Bae, Jong-Soo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.

Composition Classification of Korea Ancient Glasses by Using Raman Spectroscopy (라만분광분석법을 이용한 한국 고대 유리의 조성 분류)

  • Sim, Woo Seok;Kim, Eun A;Lim, Soo Yeong;Kim, Hyung Min;Kim, Gyu Ho
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, investigated the possibility of quantitatively and qualitatively analyzing Korean ancient glasses via Raman Spectroscopy. We subjected four categories of Korean traditional glasses, namely, lead-BaO, lead, potash, and soda glasses (3, 3, 10, and 10 pieces, respectively), to this analytical technique. The results showed significant differences between the stretching and bending Raman vibration regions corresponding to these different Korean ancient glass types. Specifically, the stretching vibration regions corresponding to lead-BaO and lead glasses showed peaks at 1040 and 1000 cm-1, respectively; the stretching vibration region of normal glass appears at 1100 cm-1. The bending vibration regions corresponding to potash and soda glass showed Raman peaks at 490 and 560 cm-1, respectively. Furthermore, the Raman spectra of the lead and lead-BaO glasses showed red shifts, which depended on the amount of PbO present. Thus, our findings highlighted the possibility of quantitatively determining the amount of PbO, a major component of lead glasses, via Raman Spectroscopy.