• Title/Summary/Keyword: rainwater

Search Result 498, Processing Time 0.021 seconds

Stability analyses of dual porosity soil slope

  • Satyanaga, Alfrendo;Moon, Sung-Woo;Kim, Jong R.
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • Many geotechnical analyses require the investigation of water flow within partially saturated soil zone to incorporate the effect of climatic conditions. It is widely understood that the hydraulic properties of the partially saturated soil should be included in the transient seepage analyses. However, the characteristics of dual porosity soils with dual-mode water retention curve are normally modelled using single-mode mathematical equation for simplification of the analysis. In reality, the rainwater flow can be affected significantly by the dual-mode hydraulic properties of the soil. This paper presents the variations of safety factor for dual porosity soil slope with dual-mode water retention curve and dual-mode unsaturated permeability. This paper includes the development of the new dual-mode unsaturated permeability to represent the characteristics of soil with the dual-mode water retention curve. The finite element analyses were conducted to examine the role of dual-mode water retention curve and dual-mode unsaturated permeability on the variations of safety factor under rainfall loading. The results indicate that the safety factor variations of dual porosity soil slope modelled using the dual-mode water retention curve and the unsaturated permeability equation are lower than those of dual porosity slope modelled using single-mode water retention curve and unsaturated permeability equations.

A STUDY ON THE LIFE-CYCLE FOR SELECTING A GRATING

  • Yun-Sik Kim;Dong-Wan Kang;Taehoon Hong;Chang-Taek Hyun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1189-1194
    • /
    • 2009
  • A gutter-shaped U grating is a facility that is installed at the sides of a road to provide pedestrians with a rainwater-free road. The previous studies on this facility focused mainly on the progress of the efforts that are being made to improve its performance and interception efficiency so as to prevent damages in regional areas due to the heavy rains caused by climate change. The studies on its maintenance, however, are still inadequate. Therefore, this study was conducted to analyze and compare the life cycle costs and performance evaluations of the steel and magic gratings, which are installed in apartments. The results of the study show that the replacement period and rate of gratings differ depending on where they are installed. The initial capital investment cost of a magic grating installed at a road where many vehicles pass is quite high, but in terms of its maintenance and entire-life-cycle costs, its total expenses are lower than those of a steel grating. The results of this study are expected to serve as preliminary data for the selection of an adequate grating that is suitable for particular places in the design phase of construction projects.

  • PDF

Application of UAV images for rainfall-induced slope stability analysis in urban areas

  • Dohyun Kim;Junyoung Ko;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • This study evaluated slope stability through a case study to determine the disaster risks associated with increased deforestation in structures, including schools and apartments, located in urban areas adjacent to slopes. The slope behind the ○○ High School in Gwangju, Korea, collapsed owing to heavy rain in August 2018. Historically, rainwater drained well around the slope during the rainy season. However, during the collapse, a large amount of seepage water flowed out of the slope surface and a shallow failure occurred along the saturated soil layer. To analyze the cause of the collapse, the images of the upper area of the slope, which could not be directly identified, were captured using unmanned aerial vehicles (UAVs). A digital elevation model of the slope was constructed through image analysis, making it possible to calculate the rainfall flow direction and the area, width, and length of logging areas. The change in the instability of the slope over time owing to rainfall lasting ten days before the collapse was analyzed through numerical analysis. Imaging techniques based on the UAV images were found to be effective in analyzing ground disaster risk maps in urban areas. Furthermore, the analysis was found to predict the failure before its actual occurrence.

Capacity determination of rainwater detention tanks using particle swarm optimization (입자 군집 최적화 기법을 이용한 빗물 저류지 용량 결정)

  • Jeong, Taekmun;Jin, Youngkyu;Kang, Taeuk;Lee, Sangho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.353-353
    • /
    • 2020
  • 기후변화에 적응하기 위해 많은 나라들이 수자원 관리 전략을 마련하고 있으며, 대체 수자원 활성화 방안에 관심을 기울이고 있다. 본 연구에서는 대체 수자원 활성화 방안 중 빗물 저류지의 용량 결정 방법을 제시하고자 한다. 빗물 저류지의 용량을 결정하기 위해 메타 휴리스틱 방법 중 하나인 입자 군집 최적화(particle swarm optimization; PSO)를 선정하였다. 이는 기존 실제 설계에 사용되고 있는 시행착오법보다 시간을 단축시킬 수 있다. 최적화 모형은 python의 pyswarm package를 이용해 구성하였다. 모형의 입력자료는 저류지 유입량과 목표 공급량, 목표 보장률이고, 목적함수는 빗물 저류지 용량의 최소화이다. 제약조건은 모의된 보장률이 목표 보장률 이상을 달성하는 것이다. 여기서, 보장률은 전체 모의 기간 중 목표 공급량을 공급한 기간의 비율이다. 제시한 방법론의 적용성을 검토하기 위해 실제 저류지가 설계된 인천의 청라지구 1공구를 선정하여 적용하였다. 최적화 모형의 입력 유입량은 SWMM으로 산정된 1995년부터 2004년까지의 유출량이며, 목표 공급량은 실제 설계에 활용된 용수 목적별 요구 수량이다. 여기서 용수 목적별 요구 수량은 대상지역의 노면 청소수, 화장실 세정수, 호수 유지수 등이다. 산정 결과 계산 시간은 약 30초 소요되며, 목표 보장률을 만족하는 저류지 용량이 결정되었다. 본 연구에 제시한 방법은 제약조건이 추가되어도 기존 시행착오법에 비해 간편함을 확인하였다.

  • PDF

Noncement-based Hydroball Evaluation of Permeable Block Strength Properties (무시멘트 기반 하이드로볼을 활용한 투수블록의 강도 특성)

  • Hwang, Woo-Jun;Lee, Chang-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.207-208
    • /
    • 2022
  • Since 1960, the green area has decreased due to rapid urbanization and the artificial surface has increased, and the repair and water function of the previous surface has decreased due to the decrease in rainwater absorption capacity. In addition, the risk of carbon dioxide and fine dust is emerging due to the use of fossil fuels due to urbanization. As a result, permeable blocks, an eco-friendly product, are in the spotlight. Therefore, this study was conducted to examine the strength properties of the permeable block using a hydroball. As a result of the experiment, the flexural strength and compressive strength tended to decrease as the hydroball replacement rate increased. It is judged that the hydroball absorbs a large amount of moisture during the mixing process and lacks moisture required for curing, resulting in a decrease in strength. According to KS F 4419, since the hydroball replacement rate is satisfied up to 20%, further research is needed to analyze the adsorption performance of air pollutants in the future and evaluate their utilization as a permeable block in the future.

  • PDF

Evaluation of characteristics of drainage layer according to particle size, particle size, and compositional location of aggregate using fluid analysis program (유체해석 프로그램을 이용한 골재의 입자크기 및 입도, 구성위치에 따른 배수층의 특성 평가)

  • Lim, Chang-Min;Kwon, Hyun-Woo;Kim, Young-Min;Cho, Do-Young;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.147-148
    • /
    • 2022
  • Due to recent climate abnormalities, the form of rainfall is changing to localized torrential rains. Localized torrential rains cause flooding in urban areas. In addition, in various industrial fields, there are cases where materials necessary for the process are kept outdoors, and damage from material loss and flooding of stockyards occurs during heavy rain. Accordingly, it is necessary to introduce a drainage layer where flooding is expected. This drainage layer places the aggregate inside and allows rainwater to penetrate and drain into the voids between the aggregates. However, the amount of voids differs according to the particle size distribution and particle size of the aggregate, and the drainage performance varies according to the compositional location of the aggregate. Therefore, in this study, the drainage characteristics according to the particle size, particle size, and compositional location of aggregates are analyzed using a fluid analysis program.

  • PDF

Study on the calculation methods to determine the scale of the sponge city facilities in residential area----- taking Shenzhen as an example

  • Liu, Jian;Dong, Min;Han, Yu-ting;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.337-345
    • /
    • 2017
  • The sponge city construction is being carried out in China, and how to reasonably determine the scale of the sponge city facilities is a key point that the planners and designers should seriously solve. In this paper, taking determination of the sponge city facilities in a residential building in Shenzhen as an example, the layout and scales of the rainwater tanks, raingardens, ecological roofs and permeable pavements are decided by using the volumetric method and stormwater management model (SWMM). The calculated results by the two methods are compared and analyzed. The results show that the scales of the sponge city facilities determined by the two methods are almost the same, and it means that any method can be used to determine the scale of sponge city facilities. The volumetric method is relatively simple, and it is suggested to use to determine the scale of sponge city facilities during planning stage. While SWMM is more complex and requires a lot of input conditions, but it can provide the reduction effects of the sponge city facilities for rainfalls with different recurrence periods. Therefore, SWMM is recommended to use the calculation of the hydrological process of the sponge city facilities during the design stage.

  • PDF

Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities (식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토)

  • Hanyong Lee;Won Hee Woo;Youn Shik Park
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.

Effect of supplementary cementitious materials on the degradation of cement-based barriers in radioactive waste repository: A case study in Korea

  • Min-Seok Kim;Sol-Chan Han;Jong-Il Yun
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3942-3949
    • /
    • 2024
  • This study focuses on investigating the chemical degradation characteristics of cementitious barriers used in low-and intermediate-level radioactive waste repository by reactive transport modeling. The impact of the blending with supplementary cementitious materials (SCMs) in the barriers on the chemical degradation was evaluated to find the optimum barrier design. A number of different barrier designs were examined by replacing ordinary Portland cement (OPC) by SCMs (i.e., fly ash, silica fume, and blast-furnace slag). The simulation results showed that silica fume blended barrier has better durability against chemical degradation by rainwater compared to fly ash or blast-furnace slag blended barriers. In addition, the chemical durability of silica fume-based barrier increased with increasing replacement level up to about 20 %. It seems that the amount of formed calcium silicate hydrate (CSH) in the initial cement-based barrier highly affects the overall chemical durability. The newly developed reactive transport model demonstrated its capability for understanding the barrier performance and investigating the optimal design of the barrier system.

Evaluation of Particle Removal Rate in Inclined-pipe Settling System for Stormwater Infiltration (강우유출수의 침투시 부하저감을 위한 경사관 침전장치의 효율평가)

  • Kim, Sangrae;Kim, Dongkeun;Mun, Jungsoo;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.719-726
    • /
    • 2009
  • One of the alternative runoff management measures is on-site runoff mitigation, such as rainwater retention tank and infiltration facilities especially the latter that is possible to manage simultaneously runoff quality and quantity as a perspective of water-cycle. This study was conducted to develop a particle separator, inclined-pipe settling system, that could improve particle removal efficiency of road runoff as a pre-treatment device of stormwater infiltration. Solid particles larger than $100{\mu}m$ are separated by simple sedimentation; however, the significant amount of pollutants with a diameter less than $100{\mu}m$ remain in suspension. Without any treatment in that case of the runoff into infiltrate, groundwater would be deteriorated and also infiltration rate would be decreased by clogging. Therefore, we suggest optimal design parameters (inclined angle, pipe length, and surface loading rate) of inclined-pipe settling system which can be designed to effectively remove particles diameter smaller then $70{\mu}m$. Thus, the results showed TSS removal efficiency more than 80% with a particle diameter between $20{\mu}m$ and $70{\mu}m$, 100% above particle diameter $70{\mu}m$ for the inflow rate $0.018 m^3/m^2{\cdot}hr$ with pipe inclined at angle $15^{\circ}$.