• Title/Summary/Keyword: rainfall prediction

Search Result 574, Processing Time 0.028 seconds

Case study on flood water level prediction accuracy of LSTM model according to condition of reference hydrological station combination (참조 수문관측소 구성 조건에 따른 LSTM 모형 홍수위예측 정확도 검토 사례 연구)

  • Lee, Seungho;Kim, Sooyoung;Jung, Jaewon;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.981-992
    • /
    • 2023
  • Due to recent global climate change, the scale of flood damage is increasing as rainfall is concentrated and its intensity increases. Rain on a scale that has not been observed in the past may fall, and long-term rainy seasons that have not been recorded may occur. These damages are also concentrated in ASEAN countries, and many people in ASEAN countries are affected, along with frequent occurrences of flooding due to typhoons and torrential rains. In particular, the Bandung region which is located in the Upper Chitarum River basin in Indonesia has topographical characteristics in the form of a basin, making it very vulnerable to flooding. Accordingly, through the Official Development Assistance (ODA), a flood forecasting and warning system was established for the Upper Citarium River basin in 2017 and is currently in operation. Nevertheless, the Upper Citarium River basin is still exposed to the risk of human and property damage in the event of a flood, so efforts to reduce damage through fast and accurate flood forecasting are continuously needed. Therefore, in this study an artificial intelligence-based river flood water level forecasting model for Dayeu Kolot as a target station was developed by using 10-minute hydrological data from 4 rainfall stations and 1 water level station. Using 10-minute hydrological observation data from 6 stations from January 2017 to January 2021, learning, verification, and testing were performed for lead time such as 0.5, 1, 2, 3, 4, 5 and 6 hour and LSTM was applied as an artificial intelligence algorithm. As a result of the study, good results were shown in model fit and error for all lead times, and as a result of reviewing the prediction accuracy according to the learning dataset conditions, it is expected to be used to build an efficient artificial intelligence-based model as it secures prediction accuracy similar to that of using all observation stations even when there are few reference stations.

Water quality prediction of inflow of the Yongdam Dam basin and its reservoir using SWAT and CE-QUAL-W2 models in series to climate change scenarios (SWAT 및 CE-QUAL-W2 모델을 연계 활용한 기후변화 시나리오에 따른 용담댐 유입수 및 호내 수질 변화 예측)

  • Park, Jongtae;Jang, Yujin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.703-714
    • /
    • 2017
  • This paper analyzes the impact of two climate change scenarios on flow rate and water quality of the Yongdam Dam and its basin using CE-QUAL-W2 and SWAT, respectively. Under RCP 4.5 and RCP 8.5 scenarios by IPCC, simulations were performed for 2016~2095, and the results were rearranged into three separate periods; 2016~2035, 2036~2065 and 2066~2095. Also, the result of each year was divided as dry season (May~Oct) and wet season (Nov~Apr) to account for rainfall effect. For total simulation period, arithmetic average of flow rate and TSS (Total Suspended Solid) and TP (Total Phosphorus) were greater for RCP 4.5 than those of RCP 8.5, whereas TN (Total Nitrogen) showed contrary results. However, when averaged within three periods and rainfall conditions the tendencies were different from each other. As the scenarios went on, the number of rainfall days has decreased and the rainfall intensities have increased. These resulted in waste load discharge from the basin being decreased during the dry period and it being increased in the wet period. The results of SWAT model were used as boundary conditions of CE-QUAL-W2 model to predict water level and water quality changes in the Yongdam Dam. TSS and TP tend to increase during summer periods when rainfalls are higher, while TN shows the opposite pattern due to its weak absorption to particulate materials. Therefore, the climate change impact must be carefully analyzed when temporal and spatial conditions of study area are considered, and water quantity and water quality management alternatives must be case specific.

Analyzing the Characteristics of Atmospheric Stability from Radiosonde Observations in the Southern Coastal Region of the Korean Peninsula during the Summer of 2019 (라디오존데 고층관측자료를 활용한 한반도 남해안 지역의 2019년도 여름철 대기 안정도 특성 분석)

  • Shin, Seungsook;Hwang, Sung-Eun;Lee, Young-Tae;Kim, Byung-Taek;Kim, Ki-Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.496-503
    • /
    • 2021
  • By analyzing the characteristics of atmospheric stability in the southern coastal region of the Korean Peninsula in the summer of 2019, a quantitative threshold of atmospheric instability indices was derived for predicting rainfall events in the Korean Peninsula. For this analysis, we used data from all of the 243 radiosonde intensive observations recorded at the Boseong Standard Weather Observatory (BSWO) in the summer of 2019. To analyze the atmospheric stability of rain events and mesoscale atmospheric phenomena, convective available potential energy (CAPE) and storm relative helicity (SRH) were calculated and compared. In particular, SRH analysis was divided into four levels based on the depth of the atmosphere (0-1, 0-3, 0-6, and 0-10 km). The rain events were categorized into three cases: that of no rain, that of 12 h before the rain, and that of rain. The results showed that SRH was more suitable than CAPE for the prediction of the rainfall events in Boseong during the summer of 2019, and that the rainfall events occurred when the 0-6 km SRH was 150 m2 s-2 or more, which is the same standard as that for a possible weak tornado. In addition, the results of the atmospheric stability analysis during the Changma, which is the rainy period in the Korean Peninsula during the summer and typhoon seasons, showed that the 0-6 km SRH was larger than the mean value of the 0-10 km SRH, whereas SRH generally increased as the depth of the atmosphere increased. Therefore, it can be said that the 0-6 km SRH was more effective in determining the rainfall events caused by typhoons in Boseong in the summer of 2019.

Predicting Crime Risky Area Using Machine Learning (머신러닝기반 범죄발생 위험지역 예측)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.64-80
    • /
    • 2018
  • In Korea, citizens can only know general information about crime. Thus it is difficult to know how much they are exposed to crime. If the police can predict the crime risky area, it will be possible to cope with the crime efficiently even though insufficient police and enforcement resources. However, there is no prediction system in Korea and the related researches are very much poor. From these backgrounds, the final goal of this study is to develop an automated crime prediction system. However, for the first step, we build a big data set which consists of local real crime information and urban physical or non-physical data. Then, we developed a crime prediction model through machine learning method. Finally, we assumed several possible scenarios and calculated the probability of crime and visualized the results in a map so as to increase the people's understanding. Among the factors affecting the crime occurrence revealed in previous and case studies, data was processed in the form of a big data for machine learning: real crime information, weather information (temperature, rainfall, wind speed, humidity, sunshine, insolation, snowfall, cloud cover) and local information (average building coverage, average floor area ratio, average building height, number of buildings, average appraised land value, average area of residential building, average number of ground floor). Among the supervised machine learning algorithms, the decision tree model, the random forest model, and the SVM model, which are known to be powerful and accurate in various fields were utilized to construct crime prevention model. As a result, decision tree model with the lowest RMSE was selected as an optimal prediction model. Based on this model, several scenarios were set for theft and violence cases which are the most frequent in the case city J, and the probability of crime was estimated by $250{\times}250m$ grid. As a result, we could find that the high crime risky area is occurring in three patterns in case city J. The probability of crime was divided into three classes and visualized in map by $250{\times}250m$ grid. Finally, we could develop a crime prediction model using machine learning algorithm and visualized the crime risky areas in a map which can recalculate the model and visualize the result simultaneously as time and urban conditions change.

Development of Reservoir Operation Model using Simulation Technique in Flood Season (I) (모의기법에 의한 홍수기 저수지 운영 모형 개발 (I))

  • Sin, Yong-No;Maeng, Seung-Jin;Go, Ik-Hwan;Lee, Hwan-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.745-755
    • /
    • 2000
  • The dam operation system of KOWACO for flood control doesn't have capability to account for the downstream hydrologic conditions and any feasible index to decide the pre-release from the forecasted rainfall and inflow. In this study, a dam operation model for flood control was developed to account for the flood flow condition of its downstream to give users the dam release schedules. Application test of EV ROM to Keum River showed that EV ROM is superior to the Rigid ROM and Technical ROM which are currently used by KOWACO. EV ROM developed in this study provides a release schedule accounting for the cumulative lateral flow hydrograph at the downstream control points where the discharge does not depend only on the dam operation. but also on lateral inflow from the tributaries. In order to reduce the peak discharge at the control points, it suggests the preliminary release during the early rising phase of the predicted hydrograph, holding the flood flow inside the dam during a peak phase, and afterward resuming the release. Three case studies of flood control by the operation of Daechung Multipurpose Dam in Geum River Basin show that the EV ROM is superior to the Rigid ROM and Technical ROM. This must be due to its nature to account for the downstream flow condition as well as the inflow and water level of the dam. It was also conceived that further case studies of EV ROM and more accurate rainfall prediction would improve the dam operation for flood control.ontrol.

  • PDF

Estimation of R-factor for Universal Soil Loss Equation with Monthly Precipitation Data in North Korea (북한 지역의 월 강수량으로부터 토양 유실 예측 공식 적용을 위한 강수 인자 산출)

  • Jeong, Yeong-Sang;Park, Cheol-Soo;Jeong, Pil-Kyun;Im, Jung-Nam;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.87-92
    • /
    • 2002
  • Soil erosion is detrimental to sustain soil productivity in north Korea, since agriculture of this country depends largely upon the slope land in mountainous area. Taking any measure for protection from erosion should be based on prediction of soil loss. Estimation of rainfall factor, R, in north Korea for the Universal Soil Loss Equation was attempted. The monthly precipitation data of the twenty six locations provided by the Korean Meteorological Adminstration were used. From the relationship between II_30 and the July-August precipitation concentration percents, the regional adjustment factor was obtained. The rainfall factor was calculated with the monthly precipitation data and the regional adjustment factor. The annual precipitation in north Korea ranged from 606 to 1,520mm, and the July-August precipitation concentration percents were 34.4 to 53.8. The regional adjustment factor ranged from 0.53 to 1.33 showing lower value in the highland and east coastal region than in the mid mountainous inland and west region. The R-factor value estimated from the monthly precipitation and the regional adjustment factor ranged from 107 to 483, which was lower than average value in south Korea.

Prediction of SWAT Stream Flow Using Only Future Precipitation Data (미래 강수량 자료만을 이용한 SWAT모형의 유출 예측)

  • Lee, Ji Min;Kum, Donghyuk;Kim, Young Sug;Kim, Yun Jung;Kang, Hyunwoo;Jang, Chun Hwa;Lee, Gwan Jae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.88-96
    • /
    • 2013
  • Much attention has been needed in water resource management at the watershed due to drought and flooding issues caused by climate change in recent years. Increase in air temperature and changes in precipitation patterns due to climate change are affecting hydrologic cycles, such as evaporation and soil moisture. Thus, these phenomena result in increased runoff at the watershed. The Soil and Water Assessment Tool (SWAT) model has been used to evaluate rainfall-runoff at the watershed reflecting effects on hydrology of various weather data such as rainfall, temperature, humidity, solar radiation, wind speed. For bias-correction of RCP data, at least 30 year data are needed. However, for most gaging stations, only precipitation data have been recorded and very little stations have recorded other weather data. In addition, the RCP scenario does not provide all weather data for the SWAT model. In this study, two scenarios were made to evaluate whether it would be possible to estimate streamflow using measured precipitation and long-term average values of other weather data required for running the SWAT. With measured long-term weather data (scenario 1) and with long-term average values of weather data except precipitation (scenario 2), the estimate streamflow values were almost the same with NSE value of 0.99. Increase/decrease by ${\pm}2%$, ${\pm}4%$ in temperature and humidity data did not affect streamflow. Thus, the RCP precipitation data for Hongcheon watershed were bias-corrected with measured long-term precipitation data to evaluate effects of climate change on streamflow. The results revealed that estimated streamflow for 2055s was the greatest among data for 2025s, 2055s, and 2085s. However, estimated streamflow for 2085s decreased by 9%. In addition, streamflow for Spring would be expected to increase compared with current data and streamflow for Summer will be decreased with RCP data. The results obtained in this study indicate that the streamflow could be estimated with long-term precipitation data only and effects of climate change could be evaluated using precipitation data as shown in this study.

Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network (신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구)

  • Kim, Mi Eun;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.697-706
    • /
    • 2013
  • In recent, Korea has faced on water quality management problems in reservoir and river because of increasing water temperature and rainfall frequency caused by climate change. This study is effectively to manage water quality for establishment of algal bloom forecasting models with artificial neural network. Daecheong reservoir located in Geum river has suitable environment for algal bloom because it has lots of contaminants that are flowed by rainfall. By using back propagation algorithm of artificial neural networks (ANNs), a model has been built to forecast the algal bloom over short-term (1, 3, and 7 days). In the model, input factors considered the hydrologic and water quality factors in Daecheong reservoir were analyzed by cross correlation method. Through carrying out the analysis, input factors were selected for algal bloom forecasting model. As a result of this research, the short term algal bloom forecasting models showed minor errors in the prediction of the 1 day and the 3 days. Therefore, the models will be very useful and promising to control the water quality in various rivers.

Identification of yearly variation in Hwacheon dam inflow using trend analysis and hydrological sensitivity method (경향성 분석과 수문학적 민감도 기법을 이용한 화천댐 유입량의 연별 변동량 규명)

  • Kim, Sang Ug;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.5
    • /
    • pp.425-438
    • /
    • 2018
  • Existing studies that analyze the causes and effects of water circulation use mostly rainfall - runoff models, which requires much effort in model development, calibration and verification. In this study, hydrological sensitivity analysis which can separate quantitatively the impacts by natural factors and anthropogenic factor was applied to the Hwacheon dam upper basin from 1967 to 2017. As a result of using various variable change point detection methods, 1999 was detected as a statistically significant change point. Especially, based on the hydrological sensitivity analysis using 5 Budyko based functions, it was estimated that the average inflow reduction amount by Imnam dam construction was $1.890\;billion\;m^3/year$. This results in this study was slightly larger than the those by existing researchers due to increase of rainfall and decrease of Hwacheon dam inflow. In future, it was suggested that effective water management measures were needed to resolve theses problems. Especially, it can be suggested that the monthly or seasonal analysis should be performed and also the prediction of discharge for future climate change should be considered to establish resonable measures.

The Current Methods of Landslide Monitoring Using Observation Sensors for Geologic Property (지질특성 관측용 센서를 이용한 산사태 모니터링 기법 현황)

  • Chae, Byung-Gon;Song, Young-Suk;Choi, Junghae;Kim, Kyeong-Su
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • There are many landslides occurred by typhoons and intense rainfall during the summer seasons in Korea. To predict a landslide triggering it is important to understand mechanisms and potential areas of landslides by the geological approaches. However, recent climate changes make difficult to predict landslide based on only conventional prediction methods. Therefore, the importance of a real-time monitoring of landslide using various sensors is emphasized in recent. Many researchers have studied monitoring techniques of landslides and suggested several monitoring systems which can be applicable to the natural terrain. Most sensors of landslide monitoring measure slope displacement, hydrogeologic properties of soils and rocks, changes of stress in soil and rock fractures, and rainfall amount and intensity. The measured values of each sensor are transmitted to a monitoring server in real-time. The ultimate goal of landslide monitoring is to warn landslide occurrence in advance and to reduce damages induced by landslides. This study introduces the current situation of landslide monitoring techniques in each country.