• Title/Summary/Keyword: rainfall at ripening stage

Search Result 7, Processing Time 0.02 seconds

Influence of Rainfall During the Ripening Stage on Pre-Harvest Sprouting, Seed Quality, and Longevity of Rice (Oryza sativa L.)

  • Baek, Jung-Sun;Chung, Nam-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.406-412
    • /
    • 2014
  • The influence of rainfall during the ripening stage on pre-harvest sprouting, seed viability, and seed quality was investigated in two Korean rice cultivars, Shindongjin and Hopum. When the rainfall was artificially treated in a greenhouse, HP started to pre-harvest sprouting at three days of rainfall treatment (DRT), but Shindongjin did not show pre-harvest sprouting at 40 DAH treatment and just 0.3~0.8% at 50 DAH, which was much lower than 15.3~25.8% of Hopum in the same treatment. After harvest, the seed germination of Hopum decreased about 10~25% compared to non-treated seeds, but that of Shindongjin decreased much little rate than that of Hopum. The seed longevity tested by accelerated aging decreased with prolonged rainfall period in both cultivars, but the varietal difference was clear; Shindongjin could withstand longer accelerated aging than Hopum. Shindongjin maintained its germination (>50%) ability after 15 days of accelerated aging regardless of the rainfall treatment period and time, but Hopum dropped below 50% germination ability after only 5 days of accelerated aging. In conclusion, rainfall during the ripening stage induced not only pre-harvest sprouting, but also reduced seed quality and longevity during storage, which varied between two cultivars.

Climate Change Impacts on Optimum Ripening Periods of Rice Plant and Its Countermeasure in Rice Cultivation (기후변화에 따른 벼 적정 등숙기간의 변동과 대책)

  • 윤성호;이정택
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.55-70
    • /
    • 2001
  • It was unusual crop weather for 1998 and 1999 compared with normal in Korea. The consecutive days of the optimum ripening period for rice plant that had daily mean temperature 21~23$^{\circ}C$ for 40 days after flowering, increased with long anomalies in 1998~99. The air temperature during ripening period was much higher than the optimum temperature and lower sunshine hour than norm in the local adaptability tests of newly developed rice lines during those years. In response of rice cultivation to warming and cloudy weather during crop season, the yield shall be decreased. Most scientists agree that the rate of heating is accelerating and temperature change could become increasingly disruptive. Weather patterns should also become more erratic. Agrometeorologists could be analyzed yearly variations of temperature, sunshine hour and rainfall pattern focused on transient agroclimate change for last a decade. Rice agronomists could be established taking advantage of real time agricultural meteorology information system for fertilization, irrigation, pest control and harvest. Also they could be analyzed the characteristics of flowering response of the recommended and newly bred rice cultivars for suitable cropping plan such as cultural patterns and sowing or transplanting date. Rice breeders should be deeply considered introducing the characteristics of basic vegetative type of flowering response like Togil rices as prospective rice cultivars corresponding to global warming because of the rices needed higher temperature at ripening stage than japonica rices, photoperiod-sensitive and thermo-sensitive ecotypes.

  • PDF

Climate Change Impacts on Optimum Ripening Periods of Rice Plant and Its Counter-Measure in Rice Cultivation (기후변화에 따른 벼 적정 등숙기간의 변동과 대책)

  • Yun Seong-Ho;Lee Jeong-Taek
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2000.11a
    • /
    • pp.28-45
    • /
    • 2000
  • It was unusual crop weather for 1998 and 1999 compared with normal in Korea. The consecutive days of the optimum ripening period for rice plant that had daily mean temperature 21-23C for 40 days after heading, increased with long anomalies in 1998-99. The air temperature during ripening period was much higher than the optimum temperature and lower sunshine hour than normal in the local adaptability tests of newly developed rice lines during those years. In response of rice cultivation to warming and cloudy weather during crop season, the yield shall be decreased. Most scientists agree that the rate of heating is accelerating and temperature change could become increasingly disruptive. Weather patterns should also become more erratic. Agrometeorologists could be analyzed yearly variations of temperature, sunshine hour and rainfall pattern focused on transient agroclimate change for last a decade. Rice agronomists could be established taking advantage of real time agricultural meteorology information system for fertilization, irrigation, pest control and harvest. Also they could be analyzed the characteristics of flowering response of the recommended and newly bred rice cultivars for suitable cropping plan such as cultural patterns and sowing or transplanting date. Rice breeders should be deeply considered introducing the characteristics of basic vegetative type of flowering response like Tonsil rices as prospective rice cultivars corresponding to global warming because of the rices needed higher temperature at ripening stage than Japonica rices, photoperiod sensitive and thermo-sensitive ecotypes

  • PDF

Investigation of Changes in Grain Quality and Physicochemical Properties of Rice According to the Temperature during the Ripening Stage and Preharvest Sprouting (벼 등숙기 기온 및 수발아가 종실 품질 및 이화학적 특성에 미치는 영향)

  • Lee, HyeonSeok;Lee, YunHo;Hwang, WoonHa;Jeong, JaeHyeok;Yang, SeoYeong;Lee, ChungGen;Choi, MyoungGoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.294-302
    • /
    • 2020
  • Studies on the occurrence of rice preharvest sprouting (PHS) have primarily focused on temperature and rainfall duration at the time of PHS induction, but average temperature during grain filling can have a great influence on PHS. This study analyzed the effect of average temperature during grain filling on PHS occurrence and subsequent changes in grain quality after PHS. For two consecutive years, average temperature differences during grain filling were produced by varying the transplanting date. Artificial rainfall was treated under identical accumulated temperatures of 1200℃ after heading. It was confirmed that the occurrence of PHS was higher under high average temperature conditions during grain filling. In addition, the degree of grain quality reduction caused by PHS occurred more severely under high temperature conditions during grain filling. In order to reduce the risk of PHS occurrence and subsequent quality damage, it is important to control the planting date to avoid high-temperature conditions during grain filling.

Effects of high temperature on the flowering & pod setting and rain in the seed elongation stage on the soybean growth

  • Han, Won Young;Park, Hyeon Jin;Jeon, Weon Tai;Ryu, Jong Soo;Bae, Jin Woo;Park, Jin Ki;Kwak, Kang Su;Baek, In Youl;Kang, Hang Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.326-326
    • /
    • 2017
  • Climate warming is the issue on the global scale. Soybean can be seriously damaged when high temperature occurs during a reproductive stage such as the flowering and pod-setting period according to the Representative Concentration Pathway (RCP) (2021~2100) 8.5 scenarios. The weather in 2016 was very different from other years (average for 30 years from 1980 to 2010) ; the highest temperature was $33.7^{\circ}C$ which was higher $3.29^{\circ}C$ than average temperature from last 30 years and average rainfall was 26.5 mm, lower 140.9 mm than average rainfalls from other years. Especially, the highest temperature during soybean flow-ering and pod setting stage was $26.8^{\circ}C$ which was higher $0.1^{\circ}C$ and rainfall was 172.2 mm, higher 47.8 mm than other years from the first to the 20th in the October at soybean seed elongation stage. Soybean leaves were turned upside down by the drought stress during the flowering and pod-setting stage. The numbe-r of pods and seeds per unit area decreased 11.0% and 30.3% compared with the previous year, respectively. The ripening period was prolonged by 21 days because of high temperature and soil moisture contents due to the continual rainmade increase of the seed weight up to 15.6% and the yield decreased 7.1% compared to the previous year.

  • PDF

Change in Yield and Quality Characteristics of Rice by Flooding during the Ripening Stage (벼 등숙기 침관수 피해에 따른 수량 및 품질 특성 변화)

  • Lee, Hyeon-Seok;Hwang, Woon-Ha;Jeong, Jae-Hyeok;Ahn, Seung-Hyeon;Baek, Jeong-seon;Jeong, Han-Yong;Park, Hong-kyu;Ku, Bon-il;Yun, Jong-Tak;Lee, Geon-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • The increase in the frequency of occurrence of abnormal weather could include severe rainfall, which could cause rice submergence during the ripening stage. This experiment was conducted to clarify the effects of submergence during the ripening period on yield and quality of rice. The flooding treatment was conducted at 7 and 14 days after heading. Flooding conditions were created with two conditions, flag leaf exposed and overhead flooding, and each condition was divided into two conditions according to water quality-clear and muddy. Although the yield decrease was more severe at 7 days after heading because of the decrease in the ripening ratio, the head rice ratio was more affected at 14 days after heading because of the increase in the chalky kernel ratio. The maximum quantum yield (Fv/Fm), which indicates the photosynthetic efficiency, did not differ before and after the flooding treatment until flooding continued for 4 days. In addition, stem elongation occurred because of flooding as an avoidance mechanism in japonica rice. This phenomenon was expected to decrease the supply of assimilation products to the spikelet (sink). Overall, it was suggested that additional experiments should be conducted examining the change in the starch synthesis mechanism and transfer of assimilate products resulting from submergence, for development of cultivation techniques corresponding to submergence and breeding of varieties with submergence tolerance characteristics.

Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea (MODIS NDVI와 기상자료를 이용한 우리나라 벼 수량 추정)

  • Hong, Suk Young;Hur, Jina;Ahn, Joong-Bae;Lee, Jee-Min;Min, Byoung-Keol;Lee, Chung-Kuen;Kim, Yihyun;Lee, Kyung Do;Kim, Sun-Hwa;Kim, Gun Yeob;Shim, Kyo Moon
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.509-520
    • /
    • 2012
  • The objective of this study was to estimate rice yield in Korea using satellite and meteorological data such as sunshine hours or solar radiation, and rainfall. Terra and Aqua MODIS (The MOderate Resolution Imaging Spectroradiometer) products; MOD13 and MYD13 for NDVI and EVI, MOD15 and MYD15 for LAI, respectively from a NASA web site were used. Relations of NDVI, EVI, and LAI obtained in July and August from 2000 to 2011 with rice yield were investigated to find informative days for rice yield estimation. Weather data of rainfall and sunshine hours (climate data 1) or solar radiation (climate data 2) were selected to correlate rice yield. Aqua NDVI at DOY 233 was chosen to represent maximum vegetative growth of rice canopy. Sunshine hours and solar radiation during rice ripening stage were selected to represent climate condition. Multiple regression based on MODIS NDVI and sunshine hours or solar radiation were conducted to estimate rice yields in Korea. The results showed rice yield of $494.6kg\;10a^{-1}$ and $509.7kg\;10a^{-1}$ in 2011, respectively and the difference from statistics were $1.1kg\;10a^{-1}$ and $14.1kg\;10a^{-1}$, respectively. Rice yield distributions from 2002 to 2011 were presented to show spatial variability in the country.