• Title/Summary/Keyword: rain rate

Search Result 364, Processing Time 0.026 seconds

Effect of Threshold on the Comparison of Radar and Rain Gauge Rain Rate (레이더 강우와 지상강우 비교에 대한 임계값의 영향 평가)

  • Yoon, Jungsoo;Ha, Eunho;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.522-522
    • /
    • 2015
  • In this study, the effect of threshold applied to the radar rain rate on the comparison of the radar and rain gauge rain rate was theoretically examined. The result derived was also evaluated theoretically, using the Bernoulli random field, and empirically, using Mt. Kwanak weather radar data. The results are summarized as follows. (1) In the application to the Bernoulli random field, it was found that the comparison of the radar and rain gauge rain rate with threshold does not introduce any systematic bias. (2) The same results could also be derived in the application to Mt Kwanak weather radar data. In all cases with several radar bin sizes and thresholds considered, the bias was estimated to be far less than 10% of the mean of the rain gauge rain rate. (3) However, in the comparison with threshold applied to both the radar and rain gauge rain rate, the bias was estimated to be higher than 20%. That is, the systematic bias was introduced. This result indicates that the comparison with threshold applied to both the radar and rain gauge rain rate should not be used.

  • PDF

Proposed One-Minute Rain Rate Conversion Method for Microwave Applications in Korea

  • Shrestha, Sujan;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.3
    • /
    • pp.153-162
    • /
    • 2016
  • Microwave and millimeter waves are considered suitable frequency ranges for diverse applications. The prediction of rain attenuation required the 1-min rainfall rate distribution, particularly for data obtained locally from experimental measurement campaigns over a given location. Rainfall rate data acquired from Korea Meteorological Administration (KMA) for nine major sites are analyzed to investigate the statistical stability of the cumulative distribution of rainfall rate, as obtained from a 10-year measurement. In this study, we use the following rain rate conversion techniques: Segal, Burgueno et al., Chebil and Rahman, exponential, and proposed global coefficient methods. The performance of the proposed technique is tested against that of the existing rain rate conversion techniques. The nine sites considered for the average 1-min rain rate derivation are Gwangju, Daegu, Daejeon, Busan, Seogwipo, Seoul, Ulsan, Incheon, and Chuncheon. In this paper, we propose a conversion technique for a suitable estimation of the 1-min rainfall rate distribution.

An Estimation of Rain Attenuation of Satellite Signal in Changwon-Masan (창원-마산 지역에서의 강우에 의한 위성신호의 감쇠량 추정)

  • 하연철;고봉진
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.34-37
    • /
    • 1998
  • Signal Attenuation in the design of satellite channel is due mostly to rain. In this paper, the rain rate characteristics based on the recent year(1994-1996) data for Changwon-Masan were approximated to Moupfouma distribution, and the parameters of distribution were calculated from a simple conversion method of 1-h rate to 1-min rain rate data. From rain rate characteristics, the rain attenuation was estimated and compared with CCR model, Global model and SAM model.

  • PDF

Method for Analysis on Optimization of Averaging Interval of Rainfall Rate Measured by Tipping-Bucket Rain Gauges

  • Nam, Kyung-Yeub;Chang, Ki-Ho;Kim, Kyung-Eak;Oh, Sung-Nam;Choi, Young-Jean;Kim, Kyung-Sik;Lee, Dong-In;Kim, Kum-Lan
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Rainfall data from three different types of rain gauge system have been collected for the summertime rain event at Mokpo in the Korean peninsula. The rain gauge system considered in this paper is composed of three tipping-bucket rain gauges with 0.1, 0.2, and 0.5 mm measuring resolutions, the Optical Rain Gauge (ORG), and the PARSIVEL (PARticle SIze and VELocity). The PARSIVEL rainfall rate has been considered as the reference for comparison since it gave good resolution and performance on this event. Comparison with the PARSIVEL rainfall rate gives the results that the error and temporal variation of rainfall rate are simultaneously reduced with increasing the averaging interval of rainfall rate or decreasing the size of tipping bucket. This suggests that the estimated rainfall rate must be optimized, differently for the type of tipping-bucket rain gages, by minimizing the averaging interval of rainfall rate under the condition satisfying the given performance of rainfall rate.

Rain Rate Estimation Process Using Doppler Spectrum of UHF Wind Profiler Radar

  • Kitichai Visessiri;Chaiwat Somboonlarp;Anuchit Waisontia;Lee, Nipha laruji;Narong Hemmakon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1575-1577
    • /
    • 2002
  • In this research we propose a method far rain rate estimation by using Doppler spectrum's data of wind profiler. The Doppler spectrum is used to calculate the wind velocity and wind direction. But in this research uses the parameters from Doppler spectrum, it calculates the rain rate. The rain rate estimation in this method will be compared to the obtained rain rate from the surface rain gauge. Two equipments are installed in the same area. The correlation coefficient between rain rate measuring method is 0.65.

  • PDF

Radiative Transfer Simulation of Microwave Brightness Temperature from Rain Rate

  • Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.59-71
    • /
    • 2002
  • Theoretical models of radiative transfer are developed to simulate the 85 GHz brightness temperature (T85) observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer as a function of rain rate. These simulations are performed separately over regions of the convective and stratiform rain. TRMM Precipitation Radar (PR) observations are utilized to construct vertical profiles of hydrometeors in the regions. For a given rain rate, the extinction in 85 GHz due to hydrometeors above the freezing level is found to be relatively weak in the convective regions compared to that in the stratiform. The hydrometeor profile above the freezing level responsible for the weak extinction in convective regions is inferred from theoretical considerations to contain two layers: 1) a mixed (or mixed-phase) layer of 2 km thickness with mixed-phase particles, liquid drops and graupel above the freezing level, and 2) a layer of graupel extending from the top of the mixed layer to the cloud top. Strong extinction in the stratiform regions is inferred to result from slowly-falling, low-density ice aggregates (snow) above the freezing level. These theoretical results are consistent with the T85 measured by TMI, and with the rain rate deduced from PR for the convective and stratiform rain regions. On the basis of this study, the accuracy of the rain rate sensed by TMI is inferred to depend critically on the specification of the convective or stratiform nature of the rain.

Regional Characteristics of the Average-Year and the Worst-Month Rain Rate Distribution in Domestic Environment (국내 지역별 연평균 및 최악월 강우율 분포 특성)

  • Kang, Woo-Geun;Kim, In-Kyum;Kim, Su-Il;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1272-1279
    • /
    • 2012
  • In this paper, models for the average-year rain rate distribution and the correlation between the worst-month and the average-year rain rate distribution in domestic environment were proposed, using the rainfall measurement data with 1-minute integration time of Korea Meteorological Administration. Comparison of the proposed model with the existing ITU-R model showed that the average rain rate of the proposed model for the exceed time rate of 0.01 % is about 28 % higher than that of the ITU-R recommendation. In addition, the correlation model between the worst-month and the average-year rain rate distribution was quite different from the ITU-R model. It is recommended that the domestic rain rate distribution model should be used for calculation of the statistical characteristics of rain attenuation(exceeded-time-rate distribution of rain attenuation) which is essential for the design of wireless communication systems in domestic environment.

Empirical Prediction Models of 1-min Rain Rate Distribution for Various Integration Time

  • Jung, Myoung-Won;Han, Il-Tak;Choi, Moon-Young;Lee, Joo-Hwan;Pack, Jeong-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.2
    • /
    • pp.84-89
    • /
    • 2008
  • In a wireless channel above microwave frequency, rain attenuation is very important. In order to predict rain attenuation, 1-min. rain rate distribution is required. This paper discusses appropriate conversion methods to estimate 1-minute rain rate from that of other integration time. Based on the measurement data filed in ITU-R WP3J including ETRI data for 6 consecutive years, distributions of rain rate with 1-, 5-, 10-, 20-, 30-minute integration time were analyzed, both on the global and regional basis, and the parametric relationship between the statistical characteristics of 1-minute and other measurement data were investigated to deduce the conversion methods. It is shown that the global model works good with good accuracy for 5-, 10-, 20-min integration time, and the global model is also applicable globally with good accuracy for 5-, 10-, 20-min integration time. The global conversion model was adopted last year as an ITU-R document for new recommendation. The regional conversion model would also be very useful for locations of similar climatic zone.

Characteristics of Millimeter-Wave Propagation in Rain Environments (강우환경에서의 밀리미터파 전파 특성)

  • 김양수;백정기;이성수;조삼모;김혁제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.410-418
    • /
    • 1998
  • Rain-attenuation and cross-polarization models for millimeter-wave propagation are discussed and compared with measurements in the various countries. Rain-rate conversion model which converted <$\tau$minutes rain-rate data to one minute rain-rate data, which is applicable for domestic environments are also discussed. Using the converted domestic rain-rate data, probability distributions of rain attenuation and cross-polarization discrimination are computed for various models, and the results are compared with each other.

  • PDF

Estimation of Rain-Attenuation for Millimeter-Wave Propagation in Domestic Environments (국내환경에 적합한 밀리미터파대역에서의 강우감쇄 추정)

  • 조삼모;김양수;백정기;이성수;김혁제
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1755-1763
    • /
    • 1998
  • The rain attenuatio of a radio channel above 10 GHz can have impact on the availability of the radio channel. The severity of the rain impairments increases with frequency and varies with regional location. This paper presents an estimation method for rain attenuation for millimeter-wave propagation in domestic environments. the dropsize distribution is assumed to be exponential, and the measurement data in the various countries which are simlar to the domestic environments are compared with the theoretical one by varying the dropsize distribution. A rain-rate conversion model which can convert .tau.-minutes rain-rate data to 1-minute rain-rate data for domestic environments is also discussed. Using the converted domestic rain-rate data, probabilty distributions of rain attenuation are computed.

  • PDF