• Title/Summary/Keyword: railway wheel

Search Result 702, Processing Time 0.032 seconds

Development of a Quasi-Three Dimensional Train/Track/Bridge Interaction Analysis Program for Evaluating Dynamic Characteristics of High Speed Railway Bridges (고속철도 교량의 동특성 해석을 위한 준3차원 차량/궤도/교량 상호작용 해석기법의 개발)

  • 김만철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2003
  • Railway bridges are subject to dynamic loads generated by the interaction between moving vehicles and the bridge structures. These dynamic loads result in response fluctuations in bridge members. To investigate the real dynamic behavior of the bridge, therefore, a number of analytical and experimental Investigations should be carried out. In this paper, a train/track/bridge interaction analysis program for evaluating the dynamic characteristics of bridges due to KTX operation in terms of structural safety, operational safety and passenger comfort is developed. To build a practical model of train/track/bridge, Hertzian spring for wheel/rail contact modeling and Winkler element for ballast are applied. This program also used torsional degree of freedom and constraint equation based on geometrical relationship in order to take into consideration three-dimensional eccentricity effect due to the operation on double track through quasi-three dimensional analysis. To verify the developed Program, comparison has been made between the measured results and those of simulation of the typical PSC box bridge(2@40m=80m) of the KHSR bridges.

Analysis of Running Safety According to Changes of Guard Rail Length on F10/F12 Turnout (F10/F12 분기기에서의 가드레일 길이 변화에 따른 주행안전성 해석)

  • Eom, Beom Gyu;Kim, Sung Jong;Lee, Seung Il;Lee, Hi Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.723-730
    • /
    • 2013
  • The speed-limit regulation on a turnout is the main factor inhibiting the speed-up of conventional lines. The specified speed for a train moving through a turnout system is lower than that for a train traveling over the general track. This is done to ensure the running safety of a railway vehicle moving through a turnout. In this study, the shape change example of the guard rail component of a turnout in the Daegu Metropolitan Transit Corporation (DTRO) system was studied. A theoretical examination of the geometrical interaction formula according to wheel/rail shape at the turnout was conducted. Running safety analysis by changing the length of the guard rail on the F10/F12 turnout using the developed analysis techniques (by VI-Rail) was achieved, and the effect on railway safety was examined accordingly.

Analysis of Permanent Deformations in Asphalt Mixtures for Design of Asphalt Trackbed Foundation (철도 노반 설계를 위한 아스팔트 혼합물의 영구변형 특성 분석)

  • Lim, Yujin;Lee, JinWook;Lee, SeongHyeok;Lee, ByeongSik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.123-132
    • /
    • 2014
  • In this study, permanent deformation of asphalt trackbed was investigated by performing repetitive load test on specimen made with dense graded asphalt mixture that was specially prepared for asphalt trackbed foundation. The obtained test results were compared with those computed from the prediction model proposed by AASHTO 2002, called MEPDG. No prediction model adaptable only for permanent deformation of the asphalt trackbed foundation has yet been developed, so the prediction model by AASHTO was adapted in this study to simulate permanent deformation of trackbed foundations in asphalt slab track and in ballasted asphalt track. In order to simulate permanent deformation, a finite element analysis was performed to obtain stresses generated in trackbed due to wheel load. It was found that the predicted permanent deformation was much smaller than the anticipated deformation and that the asphalt track could be stable during the service life of the structure.

Simulation-based Optimal Design Method for the Train Overhaul Maintenance Facility (열차 중수선 시설의 최적 설계를 위한 시뮬레이션 분석 방법)

  • Um, In-Sup;Jeong, Soo-Dong;Oh, Jung-Hun;Lee, Hong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.291-301
    • /
    • 2009
  • This paper presents the optimal design and analysis method of the train overhaul maintenance facility based on the simulation. Because the train is composed of a coach or more, we design the simulation model after analyzing the operation of train into train, coach, coach's body parts and wheel parts and soon. In simulation analysis, we consider the critical (dependent) factors and design (independent) parameters for the selection of alternatives and optimal design. Therefore, Multi Criteria Decision Making (MCDM) is proposed for the selection of alternatives and optimal method in order to find the optimal design factors. The case study for the above approach is used for the electronic locomotive overhaul maintenance facility. This paper provides a comprehensive framework for the train overhaul maintenance facility design using the simulation, MCDM and optimal methods. Therefore, the method developed for this research can be adopted for other enhancements in different but comparable situation.

A Study on Transferred Load Reduction effect of Low Elastic Pad through Dynamic Response Analysis (동적응답해석을 통한 저탄성패드의 전달하중 저감효과 연구)

  • Kim, Hyun-Ju;Lee, Il-Wha;Cho, Guk-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2464-2472
    • /
    • 2011
  • Train runs on high speed and the concrete track is constructed. Rail fastening device needs to reduce elasticity, transferred load, noise, and vibration etc. Consequently, low elastic pad has a great impact of the durability and stability of the track. In this study, discussed in previous studies, static numerical analysis and real scale repeated loading test, followed by dynamic response analysis were implemented. The most distinctive characteristics of the model proposed is to simulate the real wheel behavior on rail. And the main analysis object is to evaluate and compare the deformation characteristics of the transition track while load reduction effect of transfer on roadbed assessed by various low elastic pad.

  • PDF

A Parameter Study of Lateral Damper on Hunting Stability of Maglev Vehicle (자기부상열차의 주행안정성 해석에 의한 횡 댐퍼 파라미터 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Kim, Chang-Hyun;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.75-80
    • /
    • 2011
  • In the area of wheel on rail vehicle, hunting stability which is generated by lateral motion is one of important characteristics for running safety. It might cause not only oscillation of vehicle but also derailment in an unstable area of the high speed. A Maglev vehicle is usually controlled the voltage to maintain the air gap between electromagnet and track. However, in Maglev system, an occurrence possibility of hunting motion could be high, because Maglev vehicle is not controlled directly lateral force between electromagnet and track in the curved guideway. In this paper, running safety is evaluated when Maglev vehicle run on guideway at high speed according to installment of damper between maglev vehicles and bogies, and to analyze the effect of it. Also, the parametric study is carried out for selecting effective lateral damper properties through the simulation. To accurately predict the running safety, 3d multibody dynamics models which are included air spring, guideway conditions and irregularities profile are used. With the results acquired, suggestions were made whether to adopt the damper and how to optimize the damping characteristics.

  • PDF

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

A Study on the AWS (All Wheel Steering) ECU Test considering Requirement for Behavior of Bi-modal Tram (바이모달 트램의 거동을 요구사항으로 고려한 전차를 조향 시스템 테스트에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won;Lee, Soo-Ho;Jung, Ki-Hyun;Choi, Kyung-Hee;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.229-238
    • /
    • 2009
  • In this paper, AWS ECU test method, which is considering behavior of a Bi-modal tram, is described. In order to evaluate the performance of an electronic automotive ECU, the method which combines HILS (Hardware In the Loop Simulation) and RBT (Requirement Based Testing) is introduced. HILS is the method to predict the behavior of a vehicle adopting an ECU. The behavior of a Bi-modal tram can be analyzed by using the vehicle dynamic model. Requirement Based Testing compare the outputs of a real system with a virtual electronic unit (oracle) which created by the requirements. Rear axles of the Bi-modal tram are independently controlled by two AWS ECU. Especially, swing out can happen when an articulated vehicle is operated in the curved road. Therefore dynamic behaviour of a Bi-modal tram is considered at this situation. Through this study, the reliability of ECU can be verified economically and safely using the proposed test method before conducting the track test.

  • PDF

A study of comparative experiment process for heat resistance of brake disk materials (제동디스크 소재의 내열성 비교시험방법 연구)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.941-947
    • /
    • 2008
  • In the braking of a railroad car, mechanical brake systems using wheel tread and brake disk are applied as well as electrical brake systems by regenerator and rheostat. During disk braking, kinetic energy of the vehicle is converted into thermal energy through friction between disk and brake pad. And it causes high temperature concentration and generates thermal crack on the brake disk surface. In this study, comparative test process for heat-resistance of candidate materials was designed for development of brake disk materials having high heat-resistance. We also verified the efficiency of the process by experiments using conventional brake disk materials.

  • PDF

Characteristics of Track Behaviors according to Accelerated Tilting Train Speed (틸팅차량 증속에 따른 기존선 궤도의 거동 특성)

  • Shin, Tae-Hyoung;Choi, Jung-Youl;Eum, Ki-Young;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1653-1661
    • /
    • 2008
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. In the area of wayside structure, the stability of track structure and train run shall be evaluated through the review of impact by increased speed by developed train on track structure. The study thus was intended to evaluate the impact on track while a tilting train is running the conventional line(ballast track), which is vulnerable to accelerated train speed. The evaluation of tilting train test running the part of Honam line was conducted to identify the impact on existing track performance by tilting train. To identify the performance of each part of track components while tilting train and high speed train were running the existing line, wheel load, rail bending stress, vertical displacement of rail and sleeper were compared so as to evaluate the expected impact by tilting train for improving the train speed.

  • PDF