• Title/Summary/Keyword: railway trains

Search Result 882, Processing Time 0.029 seconds

Aerodynamic Noise Characteristics of High-speed Trains by the Beamforming Method (빔형성 기법을 이용한 고속철도차량의 공력소음특성 도출 연구)

  • Noh, Hee-Min;Choi, Sung-Hoon;Koh, Hyo-In;Hong, Suk-Yoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.3
    • /
    • pp.231-236
    • /
    • 2012
  • In this paper, aerodynamic noise characteristics of high-speed trains were deduced from the beamforming method. First, pass-by noise of high-speed trains was measured by a microphone array system. This measurement suggested that the majority of the aerodynamic noise produced came from the bogie area, the pantograph and its cover, and inter-coach gaps. Then, beampower outputs of a position in high-speed trains were obtained from the beamforming method. By Fourier transform, sound characteristics of the position in the frequency domain were deduced from the beamforming power spectrum. From this study, aerodynamic noise characteristics from the major sources of high-speed trains were drawn.

Estimating Line Capacity Considering High-Speeding and Diversification of Trains (열차 속도향상과 다양화를 감안한 선로용량 산정에 관한 연구)

  • Ki, Hyung-Seo;Park, Dong-Joo;Choi, Jong-Bin;Choo, Jun-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.623-630
    • /
    • 2009
  • The Korean railway system is a mass transit system consisting of a variety of train types such as common trains, high-speed train (KTX) and Metropolitan Express Railway (EMU). Its operation is based on the official timetable and it provides us with safe, accurate, quick and comfortable service. The objective of this study is to propose and prove more practical method for estimating line capacity by considering high-speeding and diversification of trains. In particular, the focus of this study is to reduce the discrepancy between the result of the theoretical line capacity estimation and the real line capacity of the operating agency of the Korean railway. In order to achieve the object, this study introduces a new railway capacity notion by considering TPS of line alignment, the operation type, train control and signaling system, etc. Through a practical schedule diagram exemplification, the result of the proposed method is verified as well.

A Study on Field Measurement and Analysis of Train noise at Elevated Railway in Jeolla Line (전라선 고가교 연변 철도 소음 현장측정 및 분석에 관한 연구)

  • Kim, Byoung-Sam;Won, Chan-Hee;Kim, Dae-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.629-634
    • /
    • 2001
  • The construction of the elevated railway has led to concerns about the noise from trains, particularly as tracks often pass close to residential dwellings. One specific issue relates to the noise from trains on bridges. The wayside noise for the train was measured to get the basic data that can be used to prepare count measures for solving environmental noise problems. Noise levels were measured simultaneously at three points in various distances from the railroad and at four points classified by floor. In this paper we measure the wayside noise in elevated railway and noise of normal operation compare with operating under train engine idling condition and investigate effect of nearby-building induced by train operation.

  • PDF

Measuring the vibration and Vibration control of Railway Bridge (철도교량의 진동측정 및 방진대책)

  • 엄기영;정흥채;한성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • There are many reasons for occurring vibration when trains run on the railway, but the typical vibration are occurring when the trains run on the elevated Railway bridge. For the settlement of the problems form the vibration, it must be performed to analyze the effect of the vibration to human bodies and adjacent area. and to establish the countermeasures. In this paper, we analyzed the effects of the vibration to the bridge itself and to adjacent structures by measuring the vibration of Yong-Dang Elevated Railway Bridge on Jeolla Line and adjacent area.

  • PDF

Experimental Evaluation of an Energy Storage Device with High Rotaional Speed (에너지 저장용 고속회전기의 실험적 평가)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.193-196
    • /
    • 2014
  • Experimantal evaluation of an energy storage device with high rotational speed to store regenerative energy which might be generated during the braking period of the trains is presented. The proposed ESS is small scale model and has 5kW output power, high rotational speed. In general railway trains generate regenerative energy for 10-20 sec when the train brakes and also high traction energy is needed for very short moment (10 sec) when the train increases the traction force. Considering such characteristics of the railway system energy storage device for the railway should have very fast response property. Among the various energy storage devices flywheel energy storage system has the fastest response property, which means that flywheel ESS is the most suitable for the railway system.

  • PDF

Dynamic response of railway bridges traversed simultaneously by opposing moving trains

  • Rezvani, Mohammad Ali;Vesali, Farzad;Eghbali, Atefeh
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.713-734
    • /
    • 2013
  • Bridges are vital components of the railroads. High speed of travel, the periodic and oscillatory nature of the loads and the comparable vehicle bridge weight ratio distinguish the railway bridges from the road bridges. The close proximity between estimations by some numerical methods and the measured data for the bridge-vehicle dynamic response under the moving load conditions has boosted the confidence in the numerical analyses. However, there is hardly any report regarding the responses of the railway bridges under the effect of the trains entering from the opposite directions while running at unequal speed and having dissimilar geometries. It is the purpose of this article to present an analytical method for the dynamic analysis of the railway bridges under the influence of two opposing series of moving loads. The bridge structural damping and many modes of vibrations are included. The concept of modal superposition is used to solve for the system motion equations. The method of solution is indeed a computer assisted analytical solution. It solves for the system motion equations and gives output in terms of the bridge deflection. Some case studies are also considered for the validation of the proposed method. Furthermore, the effects of varying some parameters such as the distance between the bogies, and the bogie wheelset distance are studied. Also, the conditions of resonance and cancellation in the dynamic response for a variety of vehicle-bridge specifications are investigated.

Estimation of installation spacing by analyzing the lateral behavior of the safety fence fixed to rail bottom (레일저부고정형 안전펜스의 횡 방향 거동 분석을 통한 설치간격 산정)

  • Park, Seonghyeon;Sung, Deokyong;Lee, Changho;Jung, Hyuksang;Youg, Seungkyong
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.249-257
    • /
    • 2018
  • The number of deaths for railway traffic accidents is mainly caused by working close to the track, or when unauthorized passage pass through the track. The safety fences are being used to ensure safety for workers close to the track, and to improve the efficiency of the work, without interfering with the passage of trains. However, a safety fence for railway tracks needs to be examined to see if it will interfere with the passage of trains. The purpose of this study is to analyze the safe distance between train and safety fence developed in Korea. In addition, the lateral load condition of wind pressure by trains is estimated and numerical analysis is carried out according to the installation intervals of railway safety fences. It has been confirmed that the proper spacing between the train and the railway safety fence should be at least 200 mm from the vehicle limit, and that the proper spacing of railway safety fence must be calculated in consideration of the wind pressure by trains.

Review of Minimum Curve Radius and Cant Range Setting for Mixed Section of Low and High speed Trains in Conventional Railway Line (일반철도의 저속 및 고속열차 혼용구간 최소곡선반경 및 설정캔트범위 검토)

  • Lee, Jae-Hyuk;Kim, Jeong-Hyeok;Park, Young-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.345-353
    • /
    • 2020
  • On conventional railway lines, trains with different speeds are operated. Therefore, trains moving on curved sections with cants must accept various ranges of balanced cants, cant deficiency, and cant excess, which is essential for the comfort and safety of train operation. In this study, the correlation between the curve radius, cant, and train speed on a track was analyzed to check the cant range that satisfies the criteria of train types, operation speed, cant deficiency, and cant excess. Also, the range of setting the cant by the curve radius and balanced cant were calculated by a regression analysis of train speed according to the frequency of operation in the case of mixed trains. The results could make it possible to improve the speed of the operation route, reduce the loss of ride quality, reduce the risk of derailing caused by cant deficiency, and minimize the load deflection by excess cant. This will ensure the safety of trains running on curves and improve the efficiency of track maintenance.

Calculating Braking Performance for Coaches (철도차량 객차의 제동성능 계산에 대한 방법 연구)

  • Kim, Eung-Cheon;Eun, Jung-Il;Choi, Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.554-559
    • /
    • 2011
  • Braking performance of a trainset that consists of a locomotive and several coaches and/or wagons is influenced by that of the locomotive as well as each coach or wagon. For trains to safely travel on a railway, trains must be provided with sufficient distance where to stop. Thus, replacing coaches or wagons needs calculating, measuring the braking performance such as a stopping distance or a deceleration. The task is further complicated if there are many kinds of trains with different braking performance characteristics. The accurate calculation is subject to acquire accurate information on the existing cars. Moreover, the initiation of braking by a driver or the geometry of the track affects as complicated factors. In this paper, based on the braking performance test conducted for US-SCRRA coaches, introduced several factors assumed to influence the result and the compensating methodology.

  • PDF

At which station would be installed subsidiary-main track? - Problems of interference with mixed traffic on the railway (완.급행열차 혼합운행에 따른 부본선 설치 정거장 검토)

  • Rho, Hag-Lae
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1848-1859
    • /
    • 2011
  • A subsidiary-main track for passenger station is a low-speed track section distinct from a through route such as a main track. It is parallel to a through track and connected to it at both ends by switches. Sidetracks allow for fast, high priority trains to pass slower or lower priority trains going the same direction. They are important for efficiency to order and organize the flow of rail traffic. In this paper we first describe the minimum headway between trains using the concept of occupation time in a block section, which depends on block systems, signalling system and safety technology. And then a stepwise approach is presented to select station, which is suitable to install sidetrack for a given train-traffic pattern. This approach is tested with sample example data, which are surveyed from track geometry based on the to-be-constructed line.

  • PDF