• Title/Summary/Keyword: railway embankment

Search Result 97, Processing Time 0.024 seconds

The effect of the poor infilling of the underpouring in precast slab track system on structural behavior (프리캐스트 슬래브 궤도 시스템의 충전층 충전불량이 궤도구물의 구조적 안전성에 미치는 영향)

  • Kim, Yoo-Bong;Kang, Young-Jong;Moon, Do-Young;An, Ki-Hong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.256-260
    • /
    • 2010
  • It has been proved that precast slab track has advantage of rapid construction speed and good quality compared to in-situ concrete slab track. A korean precast slab track, which is named as a K-PST, was developed and had been installed on the embankment and explored on the air. The developed track system consists of precast track panel and underpouring layer which is made of cement-asphalt mortar. Consequently, poor filling of underpouring layer directly could affect on the long-term performance of the track system. As a preliminary study, the effect of the poor infilling of the underpouring in precasst slab track system on structural behavior was investigated through FEM analysis.

  • PDF

Optimal Design of Reinforced Rail over Connection Section of Bridge and Embankment (교량/토공 접속구간 보강레일의 최적설계)

  • Yang, S.C.;Kang, Y.S.;Kim, E.
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.256-263
    • /
    • 2002
  • This paper deal with optimal design of reinforced track as a track reinforcing method for transition area of track support stiffness in transition area between bridge and earthwork. When vehicle passes through transition area, dynamic properties between vehicle and track are studied by the analysis of vehicle-train interaction for the each case when reinforced tracks are used or not. furthermore, optimum decision of type and length of track are made based on the performance adapting variable parameters : support stiffness of track for bridge and earthwork, heading direction of vehicle and type and length of track.

  • PDF

Free strain analysis of the performance of vertical drains for soft soil improvement

  • Basack, Sudip;Nimbalkar, Sanjay
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.963-975
    • /
    • 2017
  • Improvement of soft clay deposit by preloading with vertical drains is one of the most popular techniques followed worldwide. These drains accelerate the rate of consolidation by shortening the drainage path. Although the analytical and numerical solutions available are mostly based on equal strain hypothesis, the adoption of free strain analysis is more realistic because of the flexible nature of the imposed surcharge loading, especially for the embankment loading used for transport infrastructure. In this paper, a numerical model has been developed based on free strain hypothesis for understanding the behaviour of soft ground improvement by vertical drain with preloading. The unit cell analogy is used and the effect of smear has been incorporated. The model has been validated by comparing with available field test results and thereafter, a hypothetical case study is done using the available field data for soft clay deposit existing in the eastern part of Australia and important conclusions are drawn therefrom.

Present Status and Future Vision of EIA for Railroad Construction Projects (철도건설사업 환경영향평가의 현황과 과제)

  • Lee Hyun-Woo;Lee Young-Joon;Park Young Min;Yoon Mikyung
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.296-302
    • /
    • 2004
  • After the Rio declaration on environment and development in 1992, developed countries are undertaking 'environmentally sustainable transportation (EST)' projects. To meet the needs for EST, current transportation policies in Korea are rapidly reforming and one of its concerns is modernizing and upgrading railway freight system. Planning new railroad construction projects is increasing and subsequent environmental impact assessment (EIA) demands improvements, especially in both the EIA and decision making systems. In this paper, we discuss the present status of EIA for railroad construction projects, especially, by analyzing the EIA documents accumulated for last six years. The EIA for railroad construction projects .accounts for only $4.9\%$ of total project EIAs during 1998-2003. However, the portion is gradually increasing. Major environmental concerns for EIA in railroad construction projects were geomorphological and ecological changes, protection of rare organisms, air pollution, water quality, wast management, noise, etc. We also compared the characteristics of environmental impacts of railroad construction with those of vehicle road construction. The result shows that railroad construction usually requires 3${\~}$4 times longer tunnels and bridges for a given length than vehicle road construction. In addition, the amounts of geomorphological and ecological changes (road-cutting, embankment, devegetation, etc.) in railroad construction were generally less than $40\%$ of those in vehicle road construction. In order to develop environmentally friendly railway systems, monitoring studies for environmental impacts of railroads such as habitat fragmentation and road kills, dispersal of alien plants, tunnelling effects on groundwater and vegetation, and noise impacts are highly required.

  • PDF

Environmental Impact Assessment and Environmental Management of Railways (I) (철도사업 환경영향평가와 환경관리(I))

  • Lee, Hyun-Woo;Lee, Young-Joon;Park, Young Min;Lee, Jeongho;Yoon, Mikyung
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.6
    • /
    • pp.295-305
    • /
    • 2004
  • After the Rio declaration on environment and development in 1992, developed countries are undertaking "environmentally sustainable transportation (EST)" projects. To meet the needs for EST, current transportation policies in Korea are rapidly reforming and one of its concerns is modernizing and upgrading railway freight system. Planning new railroad construction projects is increasing and subsequent environmental impact assessment (EIA) demands improvements, especially in both the EIA and decision making systems. In this paper, we discuss the present status of EIA for railroad construction projects, especially, by analyzing the EIA documents for the last six years. The EIA for railroad construction projects accounts for only 4.9% of total 918 project EIAs during 1998-2003, and the portion is gradually increasing. Major environmental concerns for EIA in railroad construction projects were geomorphological and ecological changes, protection of rare organisms, air pollution, water pollution, waste management, and noise, etc. We compared characteristics of environmental impacts of railroad construction with those of vehicle road construction, based on environmental and construction-planning indicators appeared in Environmental Impact Statements. Railroad construction usually requires longer tunnels and bridges for a given length than those for vehicle road construction. In addition, the amounts of geomorphological and ecological changes (road-cutting, embankment, devegetation, etc.) in railroad construction were generally less than 50% of those in vehicle road construction. To develop environmentally friendly railway systems, monitoring studies for environmental impacts of railroads such as habitat fragmentation and road kills, dispersal of alien plants, tunnelling effects on groundwater and vegetation, and noise impacts are highly recommended.

Investigation of Settlement of Concrete Track on High-Speed Railway Due to Groundwater Variation (지하수위 변동에 따른 고속철도 콘크리트궤도의 침하 영향 검토)

  • Lee, Hyunjung;Choi, Yeong-Tae;Lee, Ilwha;Lee, Minsoo;Lee, TaeGyu
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.248-256
    • /
    • 2017
  • Groundwater drawdown was pointed out as one of the causes of induced settlement on high speed railways, especially concrete track. In this study, the effect of groundwater variation on settlement was evaluated through a comparison of field measurements with numerical analysis results. A trial and error method, i.e., repeated numerical analyses by changing material properties, was used to calibrate the model. The model was applied to investigate the effect of groundwater drawdown, thickness of soft layer, and embankment height on residual settlement after concrete track completion. A soft layer thicker than 4m would result in more than 30mm of settlement; a detailed analysis of groundwater behavior thus should be conducted from the design stage to construction.

Numerical Evaluation of Geosynthetic Reinforced Column Supported Embankments (개량체 기둥지지 성토공법의 지오그리드 보강효과에 대한 수치해석)

  • Jung, Duhwoe;Jeong, Sidong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.13-22
    • /
    • 2021
  • Pile or column supported embankments have been increasingly employed to construct highway or railway embankments over soft soils. Piles or columns of stiffer material installed in the soft ground can provide the necessary support by transferring the embankment load to a firm stratum using a soil arching. However, there has been reported to occur a relatively large differential settlement between the piles and the untreated soils. Geosynthetic reinforced pile or column supported embankment (GRPS) is often used to minimize the differential settlement. Two dimensional finite element anlyses have been performed on both the column supported embankments and the geogrid reinforced column supported embankments by using a PLAXIS 2D to evaluate the soil arching effect. Based on the results obtained from finite element analyses, the stress reduction ratio decreases as the area replacement ratio increases in the column supported embankments. For the geogrid reinforced column supported embankments, the geogrid reinforcemnt can reduce differential settlements effectively. In additon, the use of stiffer geogrid is appeared to be more effective in reducing the differential settlements.

Effect of noise barrier on aerodynamic performance of high-speed train in crosswind

  • Zhao, Hai;Zhai, Wanming;Chen, Zaigang
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.509-525
    • /
    • 2015
  • A three-dimensional aerodynamic model and a vehicle dynamics model are established to investigate the effect of noise barrier on the dynamic performance of a high-speed train running on an embankment in crosswind in this paper. Based on the developed model, flow structures around the train with and without noise barrier are compared. Effect of the noise barrier height on the train dynamic performance is studied. Then, comparisons between the dynamic performance indexes of the train running on the windward track and on the leeward track are made. The calculated results show that the noise barrier has significant effects on the structure of the flow field around the train in crosswind and thus on the dynamic performance of the high-speed train. The dynamic performance of the train on the windward track is better than that on the leeward track. In addition, various heights of the noise barrier will have different effects on the train dynamic performance. The dynamic performance indexes keep decreasing with the increase of the noise barrier height before the height reaches a certain value, while these indexes have an inverse trend when the height is above this value. These results suggest that optimization on the noise barrier height is possible and demonstrate that the designed noise barrier height of the existing China Railway High-speed line analysed in this article is reasonable from the view point of the flow field structure and train dynamic performance although the noise barrier is always designed based on the noise-related standard.

A Study on Cheongju-eup Townscape in the Late 1930s by Modeling the Restoration Image (도심 복원 이미지 제작을 통한 1930년대 후기 청주읍치 경관 고찰)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2019
  • This study explores the emergence of a modern form of Cheongju-eup townscape in the late 1930s by re-examining the 1960s restoration model of Seongan-dong and Jungang-dong in Cheongju, one of the historic cities in South Korea. According to the acquired data from the restoration model, it is found that the construction of a new urban area during the late 1930 was resulted from the following events: the development of a railroad station located outside of the north gate of Cheongju-eup since 1921, the completion of Musimcheon embankment outside the south gate in 1932, and the construction of Chungcheongbuk provincial office outside the eastern gate in 1937. In this period of development, which the author named 'Cheongju-eup period', the streets in the old castle, consisting only of two-story financial buildings, had been expanded from the existing area at the Seongan-gil intersection to the outside the east gate of Cheongju-eup. In addition, public government buildings, which were mainly located in both Seongan-gil and Yulgok-ro in the east-west direction, were newly constructed during the late 1930s in Seokgyo-dong, a new area in which a large number of commercial buildings including department stores, clothing stores, shoes shops, and watch stores were also built along the streets. Moreover, the modern form of Cheongju-eup was to be formed by several construction projects in the area of Jungang-ro in the late 1930s. Until the 1920s, the townscape outside the northern gate of Cheongju-eup, were composed of primary, agricultural, and female schools built on a largest site of Gyoseo-ro and Daeseong-ro as well as a transportation warehouse and a railway office near the Cheongju station. Then, entering the 1930s, new school buildings and domestic industrial shops and factories were built around the area of Jungang-ro ranging from the railway outside the northern gate to Bangadari. As a result, the expansion of townscape with newly constructed buildings in the late 1930s marked the emergence of a modern form of Cheongju-eup.

Reinforcement of Collapsed Railway Subgrade and Line Capacity Increase Using Short Reinforcement with Rigid Wall (짧은 보강재와 일체형 강성벽체를 활용한 철도 붕괴노반 보강 및 선로용량 증대 기술)

  • Kim, Dae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.604-609
    • /
    • 2016
  • This study evaluated the long-term performance of RSR (Reinforced Subgrade for Railways) technology which increases the railway line capacity without the need for additional land. Its characteristics include the use of a short reinforcement with rigid wall, which make it possible to apply it in confined spaces. The 7m high and 40m long testbed employed to evaluate the long-term performance was designed and constructed near Jupo station on the Chang-hang line. This line, located close to a local bus route, had collapsed at the subgrade following heavy rainfall. The performance of the new type of subgrade was verified with long term measurements over a 2 year period including the surface and ground settlement, horizontal displacement of the wall, tensile strain of the reinforcement, and settlement of the rail top on the side track. Based on the results of the measurements made until now, we concluded that it had sufficient safety and serviceability for use as a railway subgrade. It is expected that RSR technology could be frequently used at sites which lack the necessary construction materials for an embankment and are located close to functional railway lines and boundaries, in order to settle civil complaints.