• Title/Summary/Keyword: railway ballast

Search Result 282, Processing Time 0.029 seconds

A Study of Longitudinal Forces and Displacements in a Multi-Span Bridge Equipped with a CWR Track (장대레일이 설치된 교량에서의 축방향 변위 및 축력 변화 연구)

  • Lee, Joo-Heon;Huh, Young
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.442-449
    • /
    • 1999
  • Due to temperature variations, considerable longitudinal rail forces and displacements may develop in continuous welded rail(CWR) track on long-span bridges or viaducts. Excessive relative displacements between sleepers and ballast bed may disturb the stable position of the track in the ballast which results in a lower frictional resistance. Generally, these problems are solved by installing rail expansion devices. However the application of expansion devices in high-speed tracks on existing bridges, as a means to prevent excessive longitudinal displacements and forces, is not attractive method due to comfort, safety and maintenance aspects. An alternative and very effective solution is possibly the use of so-called zero longitudinal restraint(ZLR) fastenings over some length of the track. The calculations, carried out in this respect, show a considerable reduction of track displacements, track forces, and the relative sleeper/ballast displacements. This reduction depends on the length over which these fastenings are installed. In this paper calculations of the longitudinal displacments and forces in a CWR track and substructure resulting from thermal, mechanical and kinematical loads were carried out using the FEM analysis program LUSAS

  • PDF

The Dry Cleaning Machine to Recycling the used Ballast as a Aggregate of the Paved Track (포장궤도 골재로서의 도상자갈 재활용을 위한 건식세척장치)

  • Lee, Il-Wha;Lim, Jong-Il;Lee, Soon-Gu
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1525-1529
    • /
    • 2009
  • Washed ballast is used on paved track to earn the high quality track performance. But, the water washing system caused the several environment problems such as the noise, dust and water pollution. Even if the washing is performed, it is difficult to earn the high quality because of the low efficiency of the water washing system. So, we developed the dry cleaning type machine to solve these problems. This machine excludes using the water completely. Especially, it is possible to organize on the conventional ballast cleaning train set.

  • PDF

A Study on the Vibration Reduction Characteristics of the Elastic Rail Fastener/Ballast Mat (방진체결구/방진매트의 진동저감특성에 관한 연구)

  • 엄기영;황선근;고태훈;김정근
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.375-380
    • /
    • 2001
  • Generally, countermeasures for the train-induced vibration are divided into the measures at the source, propagation path and receiving object. Among these measures the countermeasure at the source location is the most active and effective one in the field of railroad. In this study, the effectiveness of each anti-vibration measures at the track(source location) such as elastic rail fastener, ballast mat were evaluated through the comparison of acceleration level, insertion loss at the installed locations of each measures. As result of field measurement of vibration at the railroad track supporting structures and on the ground nearby the structures, elastic rail fastener showed vibration reduction effect of 4.5 ∼7.3㏈ on the concrete slab, 1.6∼3.7㏈ on the ground with the train operation speed of 80km/hr. In the case of ballast mat, the vibration reduction effect at the concrete slab and on the ground were 11.9∼13.3㏈ and 6.1∼7.6㏈, respectively.

  • PDF

Numerical analysis of the under-body flow field of a train and Study of Heighter-effect for prevention of ballast -flying (자갈비산 방지를 위한 하부유동장 해석 및 Heighter 설치의 타당성 검토)

  • Kim Jong-Yong;Kwon Hyeok-Bin;Kim Tae-Yoon;Ku Yo-Cheon;Lee Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.874-879
    • /
    • 2004
  • The Korean high speed train runs at 300 km/h, ballast-flying phenomenon often happens by strong train-wind. It is important to consider the prevention of ballast-flying phenomenon, because the train under-body and fares or walker around a track might be damaged. In this study, Numerical analysis of the under-body flow field of a train and study of heighter-effect were conducted to decrease the speed of under-body. The shape of under-body was simplified for convenience of meshing and analysis. According to results of Taguchi's design by orthogonal arrays, a height of tie is dominant in the flow field, so if the heighter is installed on tie, the speed of under-body might be decreased. To apply the result of this study is useful to build a new high-speed-line might be expected.

  • PDF

The characteristics of buckling of the CWR with respect to the ballast behaviour (도상 저항력 거동을 고려한 장대레일의 좌굴 특성)

  • Kim Hyun-June;Lee Bang-Woo;Sim Hyun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.82-90
    • /
    • 2003
  • The advance in technology of the CWR in Korea has led the establishment of the CWR on the sharp curve (i.e. less than R=600m). As thermit welding used in the sharp-curved construction site is carried out on the curve track, it is difficult to adjust a curve shape accurately and these difficulties have occurred in a number of cases. Therefore, in this study, the lateral buckling analysis of CWR track was carried out considering the actual ballast resistance force. In addition, the cant and vertical resistance force in ballast was considered in order to predict the initial behaviour of bucking in track under the more accurate method.

  • PDF

Design Loads on Railway Substructure: Sensitivity Analysis of the Influence of the Fastening Stiffness

  • Giannakos, Konstantinos
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.46-56
    • /
    • 2014
  • The superstructure of the railway track undertakes the forces that develop during train passage and distributes them towards its seating. The track panel plays a key role in terms of load distribution, while at the same time it maintains the geometrical distance between the rails. The substructure and ballast undergo residual deformations under high stresses that contribute to the deterioration of the so-called geometry of the track. The track stiffness is the primary contributing factor to the amount of the stresses that develop on the substructure and is directly influenced by the fastening resilience. Four methods from the international literature are used in this paper to calculate the loads and stresses on the track substructure and the results are compared and discussed. A parametric investigation of the stresses that develop on the substructure of different types of railway tracks (i.e. balastless vs ballasted) is performed and the results are presented as a function of the total static track stiffness.

Reinforcement of Soft Soil Subgrade for High-Speed Railroad Using Geocell (연약지반상 고속철도 노반 축조시 지오셀 시스템의 효과)

  • 김진만;조삼덕;윤수호;정문경;김영윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.129-141
    • /
    • 1999
  • This paper presents the results of plate load test and dynamic load test performed to evaluate the performance of geocell where it is used to reinforce soft subgrade for high-speed railroad. Efficacy of geocell was observed in increase in bearing capacity of subgrade and reduction of thickness of reinforced sub-ballast. Plate load tests were carried out at four different places with varying foundation soil strength as a function of number of geocell layer, type of filler material, thickness of cover soil, and the presence of non-woven geotextile. Dynamic load tests were performed in a laboratory. The test soil chamber consists of, from the bottom, 50 cm thick clayey soil, one layer of geocell filled with crushed stone, 10 cm thick crushed stone cover, reinforced sub-ballast of varying thickness, 35 cm thick ballast. This configuration was determined based on the results of numerical analysis and plate load tests. For each set of the dynamic load tests, loads were applied more than 80,000 times. One layer of geocell underlying a 10 cm thick cover soil led to an increase in bearing capacity three to four times compared to a crushed stone layer of the same thickness substituted for the geocell and cover soil layer. Given the test conditions, the thickness of reinforced sub-ballast can be reduced by approximately 35 cm with the presence of geocell.

  • PDF

Analysis on the Vibration Characteristics of High Speed Train according to Track Structure (궤도구조에 따른 고속철도차량의 진동특성 분석)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.593-599
    • /
    • 2012
  • To analyze the effect of the track structure on the running performance of the railway vehicle, we studied on the vibration and ride characteristics of the high speed train. As results, vibration and ride level of high speed train on the concrete bed track is more reduced than on the ballast bed track. Peak-peak value of carbody vibration on the concrete bed track at 300km/h is half of the peak-peak value of carbody vibration on the ballast bed track. Ride level on the concrete bed track at 300km/h is same level as that on the ballast bed track at 250km/h. Thus, Vibration and ride performance of the high speed train on the concrete bed track is greatly improved compared with that on the ballast bed track.

Evaluation of the Dynamic Stability of Subway Bridge in the Applying B2S Track (B2S궤도 적용에 따른 철도교량의 동적안정성 검토)

  • Kong, Sun-Yong;Kim, Sang-Jin;Baik, Chan-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.20-27
    • /
    • 2009
  • This paper presents an analytic study for replacement of the ballast track in existing subway bridge by the Precast slab panel(B2S) track. To evaluate the dynamic responses on application of B2S track, the time history analysis with the 3D modeling. A total of two models, which were one ballast track bridge and B2S track bridge, were used in the FE analysis. The results of this study show that the dynamic displacement and acceleration of the B2S track bridge were significantly reduced for a higher train speed, compared to the ballast track bridge. Also, the replacement of the ballast track bridge in existing subway bridge by the B2S track increased the structural safety of bridge and ensured sufficient dynamic stability and serviceability. As a result, the servicing subway bridge with B2S track system has need of the reasonable measures which could be reducing the static and dynamic response and improving the performance.

  • PDF

Mechanical Characteristics of Railway Subgrade Materials Experiencing Mud-Pumping (분니가 발생한 철도 노반토의 역학적 특성)

  • 목영진;황선근;이성혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.415-422
    • /
    • 1999
  • A series of crosshole tests was conducted to evaluate the mechanical characteristics of railway subgrade materials which has been experiencing mud-pumping. The shear wave velocity profiles of mud-pumped sites were compared with those of adjacent intact sites. The shear wave velocities of mud-pumped layers are less than 150 m/sec.

  • PDF